Feeds

Supercomputing past masters resurface with coder-friendly cluster

Convex Convey boasts unified programming

Internet Security Threat Report 2014

Memory architecture secret sauce

Another secret sauce in the HC-1 is the memory architecture. The FPGA and its personality are plunked on a chip that has 16 memory channels reaching out to the system, providing 80 GB/sec of bandwidth into the FPGA. The x64 processor and the FPGA are linked together with a cache-coherent shared virtual memory space, and applications see the x64 instruction set and a set of co-processor instructions implemented in the FPGA's personality.

Programmers using standard C, C++, and Fortran compilers will be able to see these extra instructions implemented in the FPGA and can make use of them in their code. Convey has spent a lot of time making the debugging for the x64 and FPGA co-processor environment seamless, says Toal, and the resulting applications created using the HC-1 applications can run on regular x64 servers or on the HC-1. Applications do require a Convey-enhanced (and Linux Standard Base-compliant) Linux kernel to make use of the FPGA co-processors and their personalities.

The HC-1 system boards have four DIMM channels for the single x64 processor and 16 DIMM channels for the FPGA, which are linked to each other through the front side bus architecture (as x64 processors are in two-socket machines) and, in the future, through the QPI point-to-point interconnect. The Convey machine uses standard DIMMs that have been optimized for cache line transfers (sequential access) and also has a special set of scatter-gather DIMMs that have been optimize for 8-byte transfers (random access). The Xeon side of the system can support up to 32 GB of main memory for applications using 8 GB DIMMs, while the co-processor side of the system board can support up to 128 GB of memory.

The development tools created by Convey for the HC-1 are derived from the Open64 compiler set that is available for Itanium processors, which are themselves open source versions of the tools created by Silicon Graphics for its MIPS supercomputers. The Open64 tools have been ported to the x64 architecture and extended with lots of goodies by contributors in industry and academia. The HC-1 development tools also include features so customers can create their own custom personalities for the FPGAs, tuned specifically to accelerate calculations in their own applications.

With supercomputers, people want to know about performance. And here's the real reason why Wallach, Toal, Convey's investors, and the company's 33 employees are all excited about the HC-1. "Commodity platforms have flattened, and more and more cores have not resulted in more performance. We looked at the problem with a certain amount of déjà vu, back to the days when machines had attached vector processors." And the resulting HC-1 machine gives a performance boost on math routines just like those vectors of days gone by.

In early benchmark tests, the HC-1 running a protein sequencing application (an actual application running at Convey's first customer, the University of California at San Diego) showed a factor of 16 improvement in performance compared to a single two-socket Xeon box running the same code. Performance will vary depending on the application and the implementation of the FPGA personality, of course.

The HC-1 will begin shipping to beta customers in February 2009 and will be in full production in the second quarter of next year. A base HC-1 machine with a quad-core Xeon processor and 4 GB of memory on one side and the FPGA co-processor and 8 GB of memory on the other side costs $32,000. If you do the math, that's roughly 16 times the math oomph for about half the price of 16 reasonably configured two-socket Xeon boxes.

This might not be a tough sell at all, if the programming is as elegant as Toal says it is. ®

Internet Security Threat Report 2014

More from The Register

next story
Docker's app containers are coming to Windows Server, says Microsoft
MS chases app deployment speeds already enjoyed by Linux devs
IBM storage revenues sink: 'We are disappointed,' says CEO
Time to put the storage biz up for sale?
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
'Urika': Cray unveils new 1,500-core big data crunching monster
6TB of DRAM, 38TB of SSD flash and 120TB of disk storage
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
SDI wars: WTF is software defined infrastructure?
This time we play for ALL the marbles
Windows 10: Forget Cloudobile, put Security and Privacy First
But - dammit - It would be insane to say 'don't collect, because NSA'
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Cloud and hybrid-cloud data protection for VMware
Learn how quick and easy it is to configure backups and perform restores for VMware environments.
Three 1TB solid state scorchers up for grabs
Big SSDs can be expensive but think big and think free because you could be the lucky winner of one of three 1TB Samsung SSD 840 EVO drives that we’re giving away worth over £300 apiece.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.