Feeds

Plasma rocket space drive in key test milestone

Nuke tech could carry astronauts beyond Mars

Choosing a cloud hosting partner with confidence

NASA spinoff firm the Ad Astra Rocket Company has announced a key milestone in ground testing of its prototype plasma drive technology, Variable Specific Impulse Magnetoplasma Rocket (VASIMR).

The VASIMR first stage jet fires up, 22 Oct 2008

The electric rocket turns on.

The VASIMR "helicon first stage" - which generates the plasma for acceleration by the rest of the drive - has achieved its full rated power of 30 kilowatts using Argon propellant, according to the company. This paves the way for further trials in which in which the ion-cyclotron second stage will get to strut its stuff, boosting the helicon plasma stream to the target power of 200 kW.

The successful first-stage fire-up was a collaborative effort between Ad Astra and Nautel of Canada.

“We are elated with this achievement and exceptionally proud of the Ad Astra-Nautel team whose diligence and dedication made it possible, in spite of the disruption caused by the [recent] hurricane,” said Franklin Chang Díaz, Ad Astra’s chairman and CEO.

The idea of the plasma drives is to use electric power to blast reaction mass (in this case Argon) from its rocket nozzles at a much higher speed than regular chemical rockets can achieve. This means that the carrying spacecraft gets a lot more poke from a given amount of fuel, and so can make interplanetary journeys in much shorter times. Another potential application seen for VASIMR is maintaining the orbit of the international space station (ISS) without the need to burn large amounts of chemical rocket fuel.

A 10MW nuclear VASIMR ship concept

A concept VASIMR ship able to carry astronauts
to Callisto, ice moon of Jupiter

VASIMR is the brainchild of Mr Chang-Díaz, MIT plasma physicist and former NASA astronaut with seven Shuttle flights and 1600 hours in space. Chang-Díaz nowadays develops VASIMR at the Ad Astra Rocket Company. He believes that VASIMR - or some kind of more fuel-efficient propulsion, anyway - must be developed, or travel beyond Earth orbit will never become a serious activity.

For now, Ad Astra is in negotiations to put a VASIMR test unit aboard the ISS, to help in maintaining station orbit and simultaneously prove the plasma drive tech in space. NASA seems unwilling to find room for VASIMR on any of the remaining planned Shuttle flights to the ISS, but there have been hints that it might travel on a commercial-off-the-shelf lift (for instance aboard a Falcon rocket from Elon Musk's SpaceX venture) - if any of these actually come into service soon.

Presuming that Chang-Díaz can get his gear tested in space, and it performs to spec, VASIMR plasma drives could fill key roles in NASA's long-term push to the Moon and Mars. They don't have the power-to-weight ratio to be useful in reaching orbit, but once outside the atmosphere and furnished with a good supply of electricity they can leave chemical rockets choking in their superhot plasma exhaust.

Solar-powered VASIMR vessels, according to Chang-Díaz, would be very handy on the Earth-Moon run. Such ships would do less well on Martian voyages or still further from the Sun, but might still have a place.

Alternatively, if concerns over nuclear power could be assuaged, small dustbin-sized fission reactors of the type used in submarines could be employed. Chang-Díaz reckons that such a ship could do the Earth-Mars run in just 39 days.

In 2002, he wrote (pdf):

While a human Mars mission based on solar power is technically feasible, it is operationally fragile. Beyond Mars, the use of solar power for transporting and supporting human life would not be possible ... As their robotic precursors have done, future human interplanetary spacecraft will rely on nuclear power to explore the far reaches of the solar system and beyond.

If the human race is ever going beyond Mars, or ever going to see anything more of the universe than our own planetary backyard - if any of the more adventurous science fiction is ever going to become true - we're going to need nuclear power, it would seem. And lots of it. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Canberra drone team dances a samba in Outback Challenge
CSIRO's 'missing bushwalker' found and watered
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.