Boffins produce aerobatic copycat-copter pilotware

Computer see, computer do

Boost IT visibility and business value

Researchers at Stanford University have developed technology which lets computers handling remote-control helicopters achieve complex manoeuvres by copying a human pilot. Having "seen" a move carried out successfully once, the pilot-ware can then repeat it more consistently than the human.

Stanford grad students led by Professor Andrew Ng refer to their new methods as "apprenticeship learning". The Uni press release and resulting coverage has followed a "helicopters teach themselves by watching" line. However - at present, anyway - it would be more accurate to say something like "human pilot programs computer autopilot using sensor-equipped helicopter".

The Stanford kit works using normal, small remote-control copters fitted with a lot of sensors and a data link. First, a human pilot - in this case, one Garett Oku, a remote-control chopper ace - flies a manoeuvre. The sensors continually measure the copter's position and attitude, creating a precise record of what the helicopter is actually doing.

Previous attempts at writing code which could fly difficult manoeuvres such as knife-edges, Immelmanns, inverted tail slides etc would fail, because the programmers only knew in general terms what these manoeuvres consisted of. They had no idea of exactly what values and rates of change in velocity, pitch, yaw and roll would mean success in any given feat.

Oku, however, did know - but would have had difficulty describing his knowledge in terms of numbers. So the sensor-equipped copter was used as an interface to his brain, creating records of what he was actually doing.

Once the records existed, the Stanford pilot-ware running in a ground computer had a go at duplicating Oku's efforts. Again, the sensor-equipped helicopters were used, so that the computer could tell how it was doing.

According to Stanford, the computer was soon able to "fly the routine better — and more consistently — than Oku himself".

The machine was even able to execute Oku's piece de resistance, the so-called "tic toc". Here's a YouTube vid of the hands-off copter aerobatics:

(You'll need Flash installed and your net admins will need to agree you should be watching YouTube at work.)

For the Stanford experimental setup, the computer and some of the necessary instrumentation are on the ground, not in the aircraft. But Ng and his cohorts say that larger aircraft could carry all the needful gear themselves, producing an autonomous system.

This isn't so much a case of computers learning to do tasks, then, as of using sensors to describe an aircraft's motion in terms of numbers. Given an accurate description of what's wanted - generated in this case from previous successful manoeuvres - and a continual description of what's actually happening, the computer can easily enough line up the two.

It's an interesting trick, which could make the programming of some future autonomous aircraft easier and simpler. But it might struggle to find relevance. There have been aircraft flying for decades now which humans can control only with automated help. That help is generally provided using onboard computer and sensor rigs not unlike the Stanford kit just proven.

Flight tasks, profiles and such these days are usually developed from models and simulations and wind tunnels, not by flying real airframes under direct human control. The numbers may be refined somewhat in flight testing, but in the case of aircraft intended for automated control there would be no need for humans to get hands on in order to explore the limits of the envelope. A human pilot doesn't really add anything to the performance of the Space Shuttle or the B-2 bomber. Automatic systems can already accomplish most tricky piloting feats as well as humans - landing, air-to-air refuelling, carrier deck landings and so on.

The example of small helicopter aerobatics may actually be one of the last cases in aviation where the Stanford human-recording trick is applicable, rather than one of the first. And indeed, the ability to do airshow stunts isn't all that handy in and of itself. It isn't clear how this sort of thing is going to help helicopters search for landmines or track wildfires, as the Stanford boffins suggest.

It's still a pretty cool trick, though; and things like this often turn out to be useful in ways you wouldn't expect. That, after all, is what academic research is supposed to be about - things whose use isn't immediately obvious - and there are other fields of activity aside from aviation, too.

A writeup from Stanford can be read here, and more vids watched here. ®

Boost IT visibility and business value

More from The Register

next story
The Return of BSOD: Does ANYONE trust Microsoft patches?
Sysadmins, you're either fighting fires or seen as incompetents now
Microsoft refuses to nip 'Windows 9' unzip lip slip
Look at the shiny Windows 8.1, why can't you people talk about 8.1, sobs an exec somewhere
Intel's Raspberry Pi rival Galileo can now run Windows
Behold the Internet of Things. Wintel Things
Linux Foundation says many Linux admins and engineers are certifiable
Floats exam program to help IT employers lock up talent
Microsoft cries UNINSTALL in the wake of Blue Screens of Death™
Cache crash causes contained choloric calamity
Eat up Martha! Microsoft slings handwriting recog into OneNote on Android
Freehand input on non-Windows kit for the first time
Linux kernel devs made to finger their dongles before contributing code
Two-factor auth enabled for Kernel.org repositories
prev story


Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
BYOD's dark side: Data protection
An endpoint data protection solution that adds value to the user and the organization so it can protect itself from data loss as well as leverage corporate data.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?