Feeds

Clay minerals point to vast Martian lakes

Water, water, everywhere

Bridging the IT gap between rising business demands and ageing tools

A study published today in Nature indicates that large swathes of the ancient Martian highlands, comprising about half the planet, contain clay-like minerals which can only form in the presence of water, demonstrating that the Red Planet once hosted "vast lakes, flowing rivers and a variety of other wet environments that had the potential to support life", as NASA puts it.

Said minerals, called phyllosilicates, were spied by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and other instruments aboard NASA's Mars Reconnaissance Orbiter. They "preserve a record of the interaction of water with rocks dating back to what is called the Noachian period of Mars' history, approximately 4.6bn to 3.8bn years ago", and while they were buried by subsequent volcanic activity during drier periods, impact craters have exposed them to view.

John Mustard, a member of the CRISM team from Brown University, and lead author of the Nature study, explained: "The minerals present in Mars' ancient crust show a variety of wet environments. In most locations the rocks are lightly altered by liquid water, but in a few locations they have been so altered that a great deal of water must have flushed though the rocks and soil. This is really exciting because we're finding dozens of sites where future missions can land to understand if Mars was ever habitable and if so, to look for signs of past life."

The latest results back an earlier CRISM study published in the 2 June issue of Nature Geosciences which demonstrated that Mars was not awash with water, but that the liquid was present on the surface during some considerable time.

A close look at a northern-Mars impact basin called the Jezero Crater using the CRISM and High Resolution Imaging Science Experiment identified "three principal classes of water-related minerals dating to the early Noachian period", viz: aluminum-phyllosilicates; hydrated silica or opal; and the more common and widespread iron/magnesium-phyllosilicates. Significantly, the variations in the minerals "suggest that different processes, or different types of watery environments, created them".

NASA elaborates: "Thousands to millions of years after the clays formed, a system of river channels eroded them out of the highlands and concentrated them in a delta where the river emptied into a crater lake slightly larger than California's Lake Tahoe, approximately 25 miles in diameter."

NASA's image of the Jerezo Crater shows that "ancient rivers ferried clay-like minerals (shown in green) into the lake, forming the delta":

NASA's colour-enhanced image of the delta in the Jezero Crater

Bethany Ehlmann, another member of the CRISM team from Brown and lead author of the Jerezo study, concluded: "The distribution of clays inside the ancient lakebed shows that standing water must have persisted for thousands of years. Clays are wonderful at trapping and preserving organic matter, so if life ever existed in this region, there's a chance of its chemistry being preserved in the delta." ®

Mobile application security vulnerability report

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
All those new '5G standards'? Here's the science they rely on
Radio professor tells us how wireless will get faster in the real world
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.