Feeds

Mars whacked by object bigger than Pluto

'We've found the crater to prove it,' boffins claim

Next gen security for virtualised datacentres

New data from NASA's Mars Reconnaissance Orbiter and Mars Global Surveyor backs a theory that the Red Planet's huge northern hemisphere Borealis basin was created by an impact 3.9bn years ago by a body some 1,900km (1,200 miles) in diameter, or larger than Pluto.

The impact theory was rolled out in 1984 to explain why Mars boasts "two strikingly different kinds of terrain in its northern and southern hemispheres". The former's surface lies roughly 6km (3.7 miles) lower than that of the latter, suggesting that the crust was blown away by a massive collision which subsequently "greatly influenced the planet's evolution", New Scientist explains. The basin is vast measuring 8,500km (5,300 miles) by 10,600km (6,600 miles) across and covering 40 per cent of the Martian surface.

The northern hemisphere basin is noticably smoother than the rugged southern hemisphere, and the difference in altitude between the two "meant that ancient outbursts of liquid water tended to flow from south to north". Furthermore, higher atmospheric pressure in the north provokes more surface-scouring winds, making it "likely that more dust has been blown from north to south than the other way".

However, the theory ran out of steam because the basin is visibly kidney-shaped, rather than circular or elliptical in common with other impact craters.

In fact, the Borealis basin is elliptical, something concealed by "giant volcanoes [which] formed along one part of the basin rim and created a huge region of high, rough terrain that obscures the basin's outlines", as NASA puts it.

The volcanic activity was a natural result of the thinner crust resulting from the planetary pile-up, and by using "a combination of gravity data, which tend to reveal underlying structure, with data on current surface elevations", Jeffrey Andrews-Hanna and Maria Zuber of MIT, along with Bruce Banerdt of NASA's Jet Propulsion Laboratory were able to "reconstruct a map of Mars elevations as they existed before the volcanoes erupted".

Banerdt said: "In addition to the elliptical boundary of the basin, there are signs of a possible second, outer ring - a typical characteristic of large impact basins."

While the new data is "convincing some experts who doubted the impact scenario", Andrews-Hanna cautioned: "We haven't proved the giant-impact hypothesis, but I think we've shifted the tide."

The researchers' findings are published in the latest issue of Nature. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
Volcanic eruption in Iceland triggers CODE RED aviation warning
Lava-spitting Bárðarbunga prompts action from Met Office
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
Major cyber attack hits Norwegian oil industry
Statoil, the gas giant behind the Scandie social miracle, targeted
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.