Feeds

Nvidia blows out Moore’s Law with fresh Tesla

Insane horsepower for the HPC geek on the go

HP ProLiant Gen8: Integrated lifecycle automation

Nvidia pitches its Tesla hardware as a magical solution for the world’s toughest computing problems. Just move your code that runs well across many processors over to the Tesla boards, and Shazam!. You enjoy sometimes 400 per cent improvements in overall performance.

Despite such mind-blowing increases in horsepower, Tesla continues to occupy a space that one could characterize as ultra-niche. Only the brave few have navigated Nvidia’s CUDA programming apparatus to tweak their code for the general purpose graphics processors inside of the Tesla systems.

That ultra-niche, however, may grow into a niche over the coming year thanks to the introduction of more powerful Tesla systems.

Key to the release today of the Tesla-10 Series processor is the presence of 64-bit, double-precision floating point support. This upgrade lets Nvidia take better care of high performance computing customers – those who make heavy use of mathematical operations – who will likely drive Tesla’s early success.

The Tesla-10 Series chip ships with 240 processing cores – up from 128 cores in the previous product. Although, these are not the beefy cores associated with general purpose chips made by Intel, AMD and others. Instead, they’re little babies that have previously just handled graphics jobs.

Overall, the new chip boasts 1.4bn transistors and 1 Teraflop of computing muscle.

That 1 Teraflop figure is up from half a Teraflop with the older Tesla 8 chip. In addition, the new Tesla chip kicks memory support up to 4GB from 1.5GB, and that’s again a key leap forward for placating the HPC crowd.

The base unit inside of a Tesla chip has been dubbed a Thread Processor Array (TPA). The TPA consists of eight cores, which all have access to a shared memory bank. Nvidia then combines 30 of the TPAs to make a full Tesla 10 chip.

Those customers looking to get into the Tesla game have a couple of system options. Nvidia has rolled out the S1070 box, which is a 1U unit that contains 4 of the Tesla 10 chips. So, that’s 960 cores running at 1.5GHz, reaching 4 Teraflops of performance. The system also holds 16GB of memory, has peak memory bandwidth of 408GB/sec and consumes 700 watts.

Comparison slide of Nvidia's old and new Tesla gear

Tale of the Tesla Tape

You’ll need to connect the S1070 to a host server with a general purpose CPU via a pair of PCIe Gen2 cables.

If an entire box isn’t your thing, then Nvidia offers up the C1060, which is a cigarette carton-sized device that plugs into the PCIe slot on a motherboard. This puppy holds a single Tesla 10 chip clocked at 1.33GHz, has 4GB of memory and eats up 160 watts. It also has an on-board fan, which is a bit of worry if you think about packing a cluster full of these systems. Damn those moving parts!

Eight steps to building an HP BladeSystem

More from The Register

next story
THUD! WD plonks down SIX TERABYTE 'consumer NAS' fatboy
Now that's a LOT of porn or pirated movies. Or, you know, other consumer stuff
EU's top data cops to meet Google, Microsoft et al over 'right to be forgotten'
Plan to hammer out 'coherent' guidelines. Good luck chaps!
US judge: YES, cops or feds so can slurp an ENTIRE Gmail account
Crooks don't have folders labelled 'drug records', opines NY beak
Manic malware Mayhem spreads through Linux, FreeBSD web servers
And how Google could cripple infection rate in a second
FLAPE – the next BIG THING in storage
Find cold data with flash, transmit it from tape
Seagate chances ARM with NAS boxes for the SOHO crowd
There's an Atom-powered offering, too
prev story

Whitepapers

Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.