Feeds

GLAST sets its sights on gamma-ray bursts

Successful launch for universe-probing 'scope

Secure remote control for conventional and virtual desktops

NASA's Gamma-Ray Large Area Space Telescope (GLAST) yesterday lifted off from Cape Canaveral at 16:05 GMT atop a Delta II rocket.

GLAST launches from Cape Canaveral. Pic: NASAThe 'scope is now in a circular orbit around 560km (350 miles) above Earth, with its solar panels deployed and ready to get on with its task of "monitoring the universe", the agency reports.

NASA describes GLAST as "a powerful space observatory that will explore the most extreme environments in the universe, and search for signs of new laws of physics and what composes the mysterious dark matter, explain how black holes accelerate immense jets of material to nearly light speed, and help crack the mysteries of the staggeringly powerful explosions known as gamma-ray bursts (GRBs)".

GLAST's specific mission priorities are: "To understand the mechanisms of particle acceleration in active galactic nuclei (AGNs), neutron stars, and supernova remnants (SNRs); to resolve the gamma-ray sky: characterize unidentified sources and diffuse emission; to determine the high-energy behavior of gamma-ray bursts and variable sources; and to probe dark matter and the early universe."

GRBs are thought to be produced when very massive stars go supernova, creating a black hole, or may be the evidence of a collision between two neutron stars. Their interest to science lies in the fact that they're "so bright that they could be detected as far back as the earliest five per cent of the universe's life time", as we noted back in 2004 at the launch of NASA's Swift - also tasked with detecting GRBs. Given that a star must collapse, or two stars must collide to produce one, their presence is conclusive proof of star formation which in turn offers an insight into "when stars began forming, and what the universe must have been like, billions of years ago".

GLAST differs from Swift in that while the latter "can rapidly and precisely determine the locations of GRBs and observe their afterglows at X-ray, ultraviolet, and optical wavelengths, the former will deliver "exquisite observations of the burst over the gamma-ray spectrum, giving scientists their first complete view of the total energy released in these extraordinary events".

To do this, GLAST boasts three main instruments: an anticoincidence detector ("a system on a gamma-ray observatory that triggers when it detects an incoming charged particle (cosmic ray) so that the telescope will not mistake it for a gamma ray"); calorimeter ("a detector that absorbs particles and photons, producing an electrical signal proportional to the total incident energy [which] can be used to measure a gamma ray’s energy"); and GLAST Burst Monitor (GBM) ("the instrument on GLAST that is specifically designed to detect gamma-ray bursts").

The telescope will orbit the Earth every 90 minutes, allowing it to map the entire sky roughly every three hours for what NASA expects will be a mission life of five years, and hopefully up to ten. The agency has a mission overview here (pdf), FAQ here and the main GLAST site is here. ®

Next gen security for virtualised datacentres

More from The Register

next story
Vulture 2 takes a battering in 100km/h test run
Still in one piece, but we're going to need MORE POWER
TRIANGULAR orbits will help Rosetta to get up close with Comet 67P
Probe will be just 10km from Space Duck in October
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
What does a flashmob of 1,024 robots look like? Just like this
Sorry, Harvard, did you say kilobots or KILLER BOTS?
NASA's rock'n'roll shock: ROLLING STONE FOUND ON MARS
No sign of Ziggy Stardust and his band
Why your mum was WRONG about whiffy tattooed people
They're a future source of RENEWABLE ENERGY
Vulture 2 spaceplane autopilot brain surgery a total success
LOHAN slips into some sexy bespoke mission parameters
Another step forward for diamond-based quantum computers
Square cut or pear-shaped, these qubits don't lose their shape
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.