Feeds

Optical boffins cut the cost of quantum cryptography

Time shift dances the light fantastic

Using blade systems to cut costs and sharpen efficiencies

Boffins at the National Institute of Standards and Technology are trialling advanced optical techniques aimed at reducing the price of quantum cryptography systems.

The new quantum key distribution approach reduces the required number of single photon detectors, which can cost anything between $5K-$20K and are the most costly component of quantum cryptography systems.

Quantum cryptography allows two users on an optical fibre network to exchange secret keys. Each bit of the key is encoded upon a single light particle (or 'photon'). Intercepting this data randomly changes the polarization of the light, irreversibly altering the data.

Because of this quantum mechanics effect any attempt by an eavesdropper to determine a key corrupts the same key with noise. Quantum cryptography systems discard these corrupt keys and only use codes that are known to be secure. These quantum keys, once exchanged, can be used in a one-time pad.

Conventional cryptography setups involve at least two photon detectors, and more commonly four. By adding an optical component that delays the travel of photons to the detector, NIST researchers have been able to halve the number of detectors needed.

The most common polarization-based protocol, BB84, uses four single-photon detectors. One pair of detectors looks for photons with either vertical or horizontal polarization, which signify either 0 or 1. The other set of detectors record diagonally polarized photons.

NIST researchers have reduced the number of detectors required by using an optical component to make these diagonally polarized photons rotate by a further 45 degrees and arrive at the horizontal/vertical detector, but slightly later than photons that started off with this orientation. As such the approach is a type of time division multiplexing.

The same technique was used to number of detectors needed to implement the B92 protocol from two to one.

The approach cuts transmission rates by half but the advantage of lower costs far outweighs this minor disadvantage. The NIST team, led by researcher Xiao Tang, reckon the approach avoids introducing noise and might actually be more secure than conventional approaches.

NIST researchers intend to explain their detection time bin shift (DTBS) scheme in a paper due to be published by the IEEE Communications Letters next month.

In additional research carried out after the publication of this paper, the NIST team has further developed its approach so that the popular BB84 protocol requires only one detector instead of four.

A summary of the research, including diagrams, can be found on the NIST website. ®

The smart choice: opportunity from uncertainty

More from The Register

next story
Yorkshire cops fail to grasp principle behind BT Fon Wi-Fi network
'Prevent people that are passing by to hook up to your network', pleads plod
HIDDEN packet sniffer spy tech in MILLIONS of iPhones, iPads – expert
Don't panic though – Apple's backdoor is not wide open to all, guru tells us
NEW, SINISTER web tracking tech fingerprints your computer by making it draw
Have you been on YouPorn lately, perhaps? White House website?
LibreSSL RNG bug fix: What's all the forking fuss about, ask devs
Blow to bit-spitter 'tis but a flesh wound, claim team
Black Hat anti-Tor talk smashed by lawyers' wrecking ball
Unmasking hidden users is too hot for Carnegie-Mellon
Manic malware Mayhem spreads through Linux, FreeBSD web servers
And how Google could cripple infection rate in a second
Don't look, Snowden: Security biz chases Tails with zero-day flaws alert
Exodus vows not to sell secrets of whistleblower's favorite OS
Own a Cisco modem or wireless gateway? It might be owned by someone else, too
Remote code exec in HTTP server hands kit to bad guys
prev story

Whitepapers

Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.