Feeds

Bulletproof quantum crypto dinged by implementation weakness

Trust but verify

Securing Web Applications Made Simple and Scalable

Security researchers have identified possible weaknesses in quantum cryptography implementations. A team from Linköping University in Sweden has also come up with suggestions about how the attack could be blocked.

Quantum cryptography allows two users on an optical fibre network to exchange secret keys. It takes advantage of the particle-like nature of light. In quantum cryptography, each bit of the key is encoded upon a single light particle (photon). Intercepting this data randomly changes the polarisation of the light, irreversibly altering the data.

Because of this quantum mechanics effect, any attempt by an eavesdropper to determine a key corrupts the same key with noise. Quantum cryptography systems discard these corrupt keys and only use codes that are known to be secure. These quantum keys, once exchanged, can be used in a one-time pad.

The technology - long the stuff of cyberpunk novels and hi-tech spy stories - is leaving the laboratory and making its way into commercial markets, particularly in the banking sector.

The Swedish team's work does not undermine the principles that underpin quantum cryptography but rather highlight shortcomings in how systems are implemented in practice, a common source of cryptographic weaknesses. The potential weakness discovered by the Swedes involves how practical quantum cryptography systems authenticate that a received message has not been altered in transit.

Eavesdropping to obtain a quantum key isn't possible, as previously explained. But it may be possible to get clues about this quantum key. Using this information, practical quantum cryptography systems could be tricked into authenticating altered messages, the researchers warn in a paper published in the IEEE Transactions on Information Theory journal last month.

By accessing the quantum channel used in QC [quantum cryptography], the attacker can change the message to be authenticated. This, together with partial knowledge of the key, does incur a security weakness of the authentication. The underlying reason for this is that the authentication used, which is insensitive to such message changes when the key is unknown, becomes sensitive when used with a partially known key.

The research is largely based on a masters thesis by Jörgen Cederlof.

Jan-Åke Larsson, an associate professor of Applied Mathematics at Linköping University and one of the two principal authors of the study, told IT News Australia that adding a small number of random bits to the initial key exchange foils the attack, which he acknowledges would be tricky to pull off even without additional safeguards.

"We weren't expecting to find a problem in quantum cryptography but it is a really complicated system. The security of the current technology is not sufficient," Larsson said. "Authentication does not work as intended." ®

The smart choice: opportunity from uncertainty

More from The Register

next story
Mozilla fixes CRITICAL security holes in Firefox, urges v31 upgrade
Misc memory hazards 'could be exploited' - and guess what, one's a Javascript vuln
Manic malware Mayhem spreads through Linux, FreeBSD web servers
And how Google could cripple infection rate in a second
How long is too long to wait for a security fix?
Synology finally patches OpenSSL bugs in Trevor's NAS
Don't look, Snowden: Security biz chases Tails with zero-day flaws alert
Exodus vows not to sell secrets of whistleblower's favorite OS
Roll out the welcome mat to hackers and crackers
Security chap pens guide to bug bounty programs that won't fail like Yahoo!'s
HIDDEN packet sniffer spy tech in MILLIONS of iPhones, iPads – expert
Don't panic though – Apple's backdoor is not wide open to all, guru tells us
Researcher sat on critical IE bugs for THREE YEARS
VUPEN waited for Pwn2Own cash while IE's sandbox leaked
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.