Feeds

MS patch system poses 'significant risk', say researchers

The fix could automate production of the attack

Next gen security for virtualised datacentres

The automatic patch-based exploit generation (APEG) requires that the differences in patched and unpatched binaries be found first. The researchers used eEye's Binary Diffing Suite (EBDS), but others - such as the well-known bindiff - could be used as well. The researchers then tested a number of heuristics for determining which of the changes actually fixed the flaw and discovered that, frequently, the smallest changes typically acted as a reliable marker for the location of a new sanity check.

Using principles from automated test-case generation processes, the four researchers modeled the flow of the program and used an intermediate language, known as Vine, to express the sequence of instructions that lead to the vulnerable code being executed. Knowing the execution path allows the researchers to place constraints on the inputs that could trigger the exploitation of the vulnerability, significantly reducing the number of possible variables through which the APEG has to search. The researchers used a combination of static analysis, where a single execution of the program is used to determine program flow, and dynamic analysis, where an abstract graph represents all the control-flow possibilities.

The result is a constraint formula, the solution to which are candidate exploits. The possible exploits can then be tested to determine which ones are true exploits for the vulnerability.

Brumley and his colleagues used the automatic patch-based exploit generation (APEG) system to create exploits from five recent Microsoft patches. After the differences between patched and unpatched binaries were found, the system took as little as six seconds to, at most, about three minutes to find an exploit.

"Specific types of attacks, such as control hijack, are just an extra condition on the set of all possible exploits for a single bug," Brumley said. "We can include such conditions in our approach."

Even though the system does not create fully weaponize exploits and may not work for all types of vulnerabilities, it does show that developing exploits from patches could be done in minutes. Yet, Microsoft has not taken adequate steps to make such attempts more difficult, Brumley said. The researchers suggested possible avenues that Microsoft could pursue to increase the likelihood that customers received patches before attackers could reverse engineer them, including obfuscating the code, encrypting the patches and waiting to distribute the key simultaneously, and using peer-to-peer distribution to push out patches faster.

"There are ways that Microsoft could distribute patches and not tip off the attackers," Brumley said.

Microsoft declined to comment for this article, except to say that the company is reviewing the research.

Some security experts doubt whether the APEG process could result in weaponized exploits quickly enough to pose a threat.

"Every patch from Microsoft has differences," Errata Security's Graham said. "There is nothing that can really generalize across Microsoft patches. There are a lot of possibilities for diagnostic tools that will shorten the time (to create an exploit), but that time will never go to zero."

Yet, even with his doubts, Graham stressed that the trend is clear and agreed that Microsoft should be thinking about making patches more difficult to exploit.

"You (developers) should generally be thinking about this," he said. "As reverse engineering gets more prevalent in the industry, you should be generally thinking about how to change your code to make it harder to do."

Brumley and his colleagues will present the paper at the annual IEEE Symposium on Security and Privacy in May. The co-authors of the paper are Pongsin Poosankam of Carnegie Mellon University, Dawn Song of University of California at Berkeley, and Jiang Zheng of University of Pittsburgh.

This article originally appeared in Security Focus.

Copyright © 2008, SecurityFocus

The essential guide to IT transformation

More from The Register

next story
Goog says patch⁵⁰ your Chrome
64-bit browser loads cat vids FIFTEEN PERCENT faster!
Chinese hackers spied on investigators of Flight MH370 - report
Classified data on flight's disappearance pinched
NIST to sysadmins: clean up your SSH mess
Too many keys, too badly managed
Scratched PC-dispatch patch patched, hatched in batch rematch
Windows security update fixed after triggering blue screens (and screams) of death
Researchers camouflage haxxor traps with fake application traffic
Honeypots sweetened to resemble actual workloads, complete with 'secure' logins
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.