Feeds

NASA's Phoenix closes on Red Planet

Arctic touch-down on 25 May

The smart choice: opportunity from uncertainty

NASA has adjusted the flight path of its Phoenix Mars Lander, en route to a planned touch-down on the Red Planet on 25 May, on its mission to explore the body's Arctic plain.

The agency has "conditionally approved" a roughly 62 mile by 12 mile (100km by 20km) "landing ellipse" in an area dubbed "Green Valley", which lies at approximately 68 degrees N, 233 degrees E, having scoured High Resolution Imaging Science Experiment (HiRISE) images of the area for potential hazards.

NASA explains that the camera has snapped "more than three dozen images of the area" and that "analysis of those images prompted the Phoenix team to shift the centre of the landing target 13km (8 miles) southeastward, away from slightly rockier patches to the northwest".

Accordingly, the Phoenix navigation team at NASA's Jet Propulsion Laboratory in Pasadena yesterday carried out a trajectory adjustment by "pivoting Phoenix 145 degrees to orient and then [firing] spacecraft thrusters for about 35 seconds, then pivoting Phoenix back to point its main antenna toward Earth".

Phoenix's landing will be a nail-biter for the NASA team. Researchers have identified five million rocks in and around the eclipse "each big enough to end the mission if hit by the spacecraft during landing".

JPL's David Spencer, Phoenix deputy project manager, said: "The environmental risks at landing - rocks and slopes - represent the most significant threat to a successful mission. There's always a chance that we'll roll snake eyes, but we have identified an area that is very flat and relatively free of large boulders."

Of the touch-down, NASA adds: "In the final seven minutes of its flight on 25 May, Phoenix must perform a challenging series of actions to safely decelerate from nearly 21,000km/h (13,000mph). The spacecraft will release a parachute and then use pulse thrusters at approximately 914 metres (3,000 feet) from the surface to slow to about 8km/h (5mph) and land on three legs."

Once safely down, Phoenix will "dig to an ice-rich layer expected to lie within arm's reach of the surface and analyse the water and soil for evidence about climate cycles and investigate whether the environment there has been favorable for microbial life".

Peter Smith, principal mission investigator at the University of Arizona, explained: "Our landing area has the largest concentration of ice on Mars outside of the polar caps. If you want to search for a habitable zone in the arctic permafrost, then this is the place to go."

Phoenix packs an arsenal of mission instruments - Surface Stereo Imager; Robotic Arm Camera; Mars Descent Imager; Thermal and Evolved Gas Analyzer; Microscopy, Electrochemistry, and Conductivity Analyser; Wet Chemistry Experiment; Microscopy, including the Optical Microscope and the Atomic Force Microscope; Thermal and Electrical Conductivity Probe; and Meteorological Station - designed to achieve it's two principal "bold objectives" to "study the history of water in the Martian arctic" and "search for evidence of a habitable zone and assess the biological potential of the ice-soil boundary".

There's more on the mission's science at the University of Arizona. ®

The Power of One Infographic

More from The Register

next story
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
Jurassic squawk: Dinos were Earth's early FEATHERED friends
Boffins research: Ancient dinos may all have had 'potential' fluff
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.