Feeds

Intel 'Nehalem' CPU 'borrows' AMD Phenom cache plan

L3 promoted, L2 demoted

Build a business case: developing custom apps

Intel's 45nm 'Nehalem' processor architecture, due for release later this year, will see the chip maker adopt AMD's approach to cache structure: small per-core Level 1 and Level 2 caches connected to a big, shared Level 3 cache.

Nehalem, which will form the basis for two-, four- and eight-core processors, will contain 64KB of L1 cache per core, split 50:50 between memory reserved for program instructions and for data. That's current how Core 2 CPUs work, but while today's desktop and mobile CPUs complement that with a big, multi-megabyte L2 caches shared between pairs of cores, each Nehalem core will get 256KB of L2 cache of its own.

All two, four or eight cores will then be able to access a shared pool of up to 8MB of L3 cache memory, allowing them to take as much or as little as they need for the threads they're running up to the overall limit.

Intel Nehalem

Intel's Nehalem: native quad-core

It's an approach AMD introduced with its Phenom chips. Earlier AMD processors gave each CPU both its own L1 cache and L2 memory. Intel previously poo-poo'd this design, claiming better performance could be achieved using a shared L2. Whatever the reason, the Phenom CPU line introduced a third tier of cache, this time shared.

The Phenom 9600, for example, has 2MB of L2 divided into four 512KB blocks, each assigned to a single core. All four cores share a further 2MB of L3. Each core has 128KB of L1 cache.

It's a logical move for Intel as it was for AMD. The exclusive L2 caches give each core a pool of fast-access memory, while the shared cache acts as a buffer to trap data and instructions other cores may have requested and which another core can now grab more quickly that going out to main memory or peeking onto other cores' personal storage.

More to the point, since Nehalem is essentially Intel's first design - as AMD's have been for some time - that doesn't build four-core CPUs out of groups of two two-core dies. With no shared L3, the core-pairs in today's Core 2 Quad and Core 2 Extreme processors have to look in other core-pairs' caches, which can hinder performance.

Each Nehalem core uses Intel HyperThreading technology to handle up to two processing threads in execution simultaneously, allowing a four-core chip to appear to the host OS as an eight-core part.

Nehalem will initially be a 'true' quad-core part, but Intel promised future, eight-core parts that are built natively rather than from a part of quad-core CPUs bolted together.

The CPU design incorporates an out-of-order window running to 128 instructions, up from Core 2's 96 instructions. That allows the new chip to look ahead to a greater number of instructions to see which can be pulled out of the program sequence and processed without affecting the results of operations further down the line. It's also able to keep 33 per cent more micro-ops in flight at once than its predecessor could.

The essential guide to IT transformation

More from The Register

next story
Reg man looks through a Glass, darkly: Google's toy ploy or killer tech specs?
Tip: Put the shades on and you'll look less of a spanner
So, Apple won't sell cheap kit? Prepare the iOS garden wall WRECKING BALL
It can throw the low cost race if it looks to the cloud
One step closer to ROBOT BUTLERS: Dyson flashes vid of VACUUM SUCKER bot
Latest cleaner available for world+dog in September
Samsung Gear S: Quick, LAUNCH IT – before Apple straps on iWatch
Full specs for wrist-mounted device here ... but who'll buy it?
Apple promises to lift Curse of the Drained iPhone 5 Battery
Have you tried turning it off and...? Never mind, here's a replacement
Now that's FIRE WIRE: HP recalls 6 MILLION burn-risk laptop cables
Right in the middle of Burning Mains Man week
Apple's iWatch? They cannae do it ... they don't have the POWER
Analyst predicts fanbois will have to wait until next year
Tim Cook in Applerexia fears: New MacBook THINNER THAN EVER
'Supply chain sources' give up the goss on new iLappy
HUGE iPAD? Maybe. HUGE ADVERTS? That's for SURE
Noo! Hand not big enough! Don't look at meee!
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.