Feeds

Antarctic meteorite points to smashed dwarf planet

Lost world of early solar system

Intelligent flash storage arrays

Two pieces of meteorite found in 2006 in the Graves Nunataks area of Antarctica are likely fragments of a dwarf planet destroyed in the solar system's youth, New Scientist reports.

Detailed studies of the chunks, dubbed GRA 06128 and GRA 06129, significantly revealed that they contain 75-90 per cent feldspar, indicating their parent body underwent "differentiation" in which dense material settles towards the centre of molten, magma ocean-lapped bodies in their first few tens of millions of years.

Samples of Moon rock show even higher levels of "relatively lightweight" feldspar, "thought to be the result of crystals of feldspar solidifying from the early magma ocean" and floating to the top "allowing it to form a highly concentrated layer of the mineral".

Accordingly, Allan Treiman of the Lunar and Planetary Institute in Houston, Texas, who studied one of the rocks, said that "the amount of feldspar in the two meteorite fragments suggests they are remnants of a very large body that differentiated in a similar way".

This conclusion is backed by other studies of the meteorite remains, including one headed by Richard Ash of the University of Maryland in College Park, a second led by Chip Shearer of the University of New Mexico, and a third directed by Ryan Zeigler of Washington University in St Louis, Missouri. All concur that "the parent body must have been massive enough to have separated into layers".

The University of Maryland team also ruled out the possibility that GRA 06128 and GRA 06129 were bits of the Earth, Mars, Moon or Venus. A peruse of the radioactive decay of elements they contain showed that they "must have formed around 4.5 billion years ago, when Earth and the other planets were coalescing".

Treiman, who led yet another study of one of the fragments, told New Scientist: "This is a piece of a dwarf-planet size body that apparently no longer exists. We have here a sample of a strange new world, a sample we've never seen before."

Treiman reckons the feldspar concentrations "suggest that body was probably smaller than the 3,500-kilometre-wide Moon but larger than Vesta, the third largest asteroid in the solar system at 578 kilometres across".

The evidence to back this calculation comes from meteorites believed to come from Vesta which "contain solidified lava, but not large concentrations of feldspar, suggesting its gravity was not strong enough to form a distinct layer of the mineral".

Quite how the parent body of GRA 06128 and GRA 06129 disappeared is unknown. A collision may have resulted in fragments which still haunt the solar system as asteroids and "might be identified by their light spectra".

The teams'* research findings were presented yesterday at the Lunar and Planetary Science Conference in Houston, Texas. ®

Bootnote

*A fifth and final team from National Institute for Polar Research in Tokyo provocatively suggested that some of the meteorite's characteristics, including "the high abundance of sodium in some of its minerals", hint at a parent body rich in water.

Intelligent flash storage arrays

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Rosetta science team thinks Philae might come to life in the spring
And disclose the biggest surprise of Comet 67P
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
prev story

Whitepapers

10 ways wire data helps conquer IT complexity
IT teams can automatically detect problems across the IT environment, spot data theft, select unique pieces of transaction payloads to send to a data source, and more.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
How to determine if cloud backup is right for your servers
Two key factors, technical feasibility and TCO economics, that backup and IT operations managers should consider when assessing cloud backup.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.