Feeds

Academics propose carbon-capture kit for cars

I will also turn water to petrol, says prof

Beginner's guide to SSL certificates

US-based researchers have unveiled a cunning plan for future motoring in which carbon-capture technology would be used aboard vehicles. The stored carbon would then be recovered at filling stations and - rather than being "sequestered" underground or wherever - get reprocessed back into synthetic fuel.

"We wanted to create a practical and sustainable energy strategy for automobiles," said Andrei Fedorov, associate professor at the Georgia Institute of Technology (GIT).

Under the GIT plans, cars of the future would fill their tanks in everyday style with hydrocarbon fuel - ordinary petroleum-based stuff or synthetic, it doesn't matter. Rather than being burned right away as at present, the car would initially run it through a "CO2/H2 Active Membrane Piston (CHAMP) reactor" which would convert the juice into carbon dioxide and hydrogen.

The carbon dioxide would be stored as liquid in an onboard tank, and the hydrogen would be used to drive the vehicle. Ordinary car engines can run on hydrogen with only minor modifications; or the hydrogen could be used more efficiently in a fuel-cell and electric drive. In either case, there would be no significant emissions.

Later on, the liquefied CO2 could be taken out of the vehicle - perhaps at the pump when refuelling. It could then be "sequestrated", perhaps winding up stored/dumped underground, in the sea or somewhere - a plan often proposed for dealing with power-station emissions. Sequestration isn't always seen as genuinely achievable, however.

It doesn't matter, because GIT has more than CHAMP to offer. Fedorov and his colleagues propose that the vast amounts of stored CO2 produced by motor transport could be combined with water at a reprocessing plant to produce synthetic hydrocarbon fuel, which would then be used again.

Naturally, the reprocessing plant would use large amounts of energy, which would have to come from somewhere. In essence, the GIT CHAMP scheme isn't unlike plans for hydrogen-fuelled vehicles; the fuel is basically just a means of storing energy from another source. The advantage of CHAMP is that storing and transporting liquid CO2 is simpler and safer than handling hydrogen. CO2 doesn't want to be a liquid at normal temperatures, but it can be kept in that form at relatively low pressures - say 30 bar on a warm day. And if it leaks, nothing very bad will happen; whereas if hydrogen escapes into a confined space the building might blow up.

The disadvantages would be that of burdening every vehicle with a CHAMP processor and CO2 tank, and the need to move the stuff back to the reprocessing plants.

Common to both strategies - hydrogen or synthifuel/CHAMP - would be the need to provide huge amounts of power at production facilities. There would be little point in adopting a clean vehicle technology if it were ultimately powered by a vastly increased use of fossil fuel in generating or reprocessing stations.

Unfortunately, renewable means such as hydro, solar, or wind power are usually only thought able to supply a varying proportion of current electricity usage - even ardent advocates of these technologies don't normally suggest that they could also propel the human race's transport.

The only feasible option for hydrogen is usually seen as being a serious increase in nuclear power, and on the face of it this would also seem true of GIT's CHAMP vision. Just like hydrogen-car promoters unwilling to face anti-nuclear opposition, however, Fedorov is keen to suggest that other means might be found.

"The greatest remaining challenge... will be developing a method for making a synthetic liquid fuel from just CO2 and water using renewable energy sources."

No shit. In fact, one might say that challenge is much more significant than building the CHAMP, though it does sound like a clever bit of kit. One might well never bother with carbon-capture if sequestration were the only plan on offer: but Fedorov's miracle petrol factories could make the global economy treat liquid CO2 the way it currently treats crude oil.

The GIT CHAMP research was funded by NASA and the US Defense department. It is published in the journal Energy Conversion and Management. ®

Remote control for virtualized desktops

More from The Register

next story
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
The next big thing in medical science: POO TRANSPLANTS
Your brother's gonna die, kid, unless we can give him your, well ...
NASA launches new climate model at SC14
75 days of supercomputing later ...
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
prev story

Whitepapers

Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Driving business with continuous operational intelligence
Introducing an innovative approach offered by ExtraHop for producing continuous operational intelligence.
10 threats to successful enterprise endpoint backup
10 threats to a successful backup including issues with BYOD, slow backups and ineffective security.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?