Feeds

Academics propose carbon-capture kit for cars

I will also turn water to petrol, says prof

Beginner's guide to SSL certificates

US-based researchers have unveiled a cunning plan for future motoring in which carbon-capture technology would be used aboard vehicles. The stored carbon would then be recovered at filling stations and - rather than being "sequestered" underground or wherever - get reprocessed back into synthetic fuel.

"We wanted to create a practical and sustainable energy strategy for automobiles," said Andrei Fedorov, associate professor at the Georgia Institute of Technology (GIT).

Under the GIT plans, cars of the future would fill their tanks in everyday style with hydrocarbon fuel - ordinary petroleum-based stuff or synthetic, it doesn't matter. Rather than being burned right away as at present, the car would initially run it through a "CO2/H2 Active Membrane Piston (CHAMP) reactor" which would convert the juice into carbon dioxide and hydrogen.

The carbon dioxide would be stored as liquid in an onboard tank, and the hydrogen would be used to drive the vehicle. Ordinary car engines can run on hydrogen with only minor modifications; or the hydrogen could be used more efficiently in a fuel-cell and electric drive. In either case, there would be no significant emissions.

Later on, the liquefied CO2 could be taken out of the vehicle - perhaps at the pump when refuelling. It could then be "sequestrated", perhaps winding up stored/dumped underground, in the sea or somewhere - a plan often proposed for dealing with power-station emissions. Sequestration isn't always seen as genuinely achievable, however.

It doesn't matter, because GIT has more than CHAMP to offer. Fedorov and his colleagues propose that the vast amounts of stored CO2 produced by motor transport could be combined with water at a reprocessing plant to produce synthetic hydrocarbon fuel, which would then be used again.

Naturally, the reprocessing plant would use large amounts of energy, which would have to come from somewhere. In essence, the GIT CHAMP scheme isn't unlike plans for hydrogen-fuelled vehicles; the fuel is basically just a means of storing energy from another source. The advantage of CHAMP is that storing and transporting liquid CO2 is simpler and safer than handling hydrogen. CO2 doesn't want to be a liquid at normal temperatures, but it can be kept in that form at relatively low pressures - say 30 bar on a warm day. And if it leaks, nothing very bad will happen; whereas if hydrogen escapes into a confined space the building might blow up.

The disadvantages would be that of burdening every vehicle with a CHAMP processor and CO2 tank, and the need to move the stuff back to the reprocessing plants.

Common to both strategies - hydrogen or synthifuel/CHAMP - would be the need to provide huge amounts of power at production facilities. There would be little point in adopting a clean vehicle technology if it were ultimately powered by a vastly increased use of fossil fuel in generating or reprocessing stations.

Unfortunately, renewable means such as hydro, solar, or wind power are usually only thought able to supply a varying proportion of current electricity usage - even ardent advocates of these technologies don't normally suggest that they could also propel the human race's transport.

The only feasible option for hydrogen is usually seen as being a serious increase in nuclear power, and on the face of it this would also seem true of GIT's CHAMP vision. Just like hydrogen-car promoters unwilling to face anti-nuclear opposition, however, Fedorov is keen to suggest that other means might be found.

"The greatest remaining challenge... will be developing a method for making a synthetic liquid fuel from just CO2 and water using renewable energy sources."

No shit. In fact, one might say that challenge is much more significant than building the CHAMP, though it does sound like a clever bit of kit. One might well never bother with carbon-capture if sequestration were the only plan on offer: but Fedorov's miracle petrol factories could make the global economy treat liquid CO2 the way it currently treats crude oil.

The GIT CHAMP research was funded by NASA and the US Defense department. It is published in the journal Energy Conversion and Management. ®

Internet Security Threat Report 2014

More from The Register

next story
FORGET the CLIMATE: FATTIES are a MUCH BIGGER problem - study
Fat guy? Drink or smoke? You're worse than a TERRORIST
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
Rosetta probot drilling DENIED: Philae has its 'LEG in the AIR'
NOT best position for scientific fulfillment
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
HUMAN DNA 'will be FOUND ON MOON' – rocking boffin Brian Cox
Crowdfund plan to stimulate Blighty's space programme
Post-pub nosh neckfiller: The MIGHTY Scotch egg
Off to the boozer? This delicacy might help mitigate the effects
I'M SO SORRY, sobs Rosetta Brit boffin in 'sexist' sexy shirt storm
'He is just being himself' says proud mum of larger-than-life physicist
NASA launches new climate model at SC14
75 days of supercomputing later ...
LIFE, JIM? Comet probot lander found 'ORGANICS' on far-off iceball
That's it for God, then – if Comet 67P has got complex molecules
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Managing SSL certificates with ease
The lack of operational efficiencies and compliance pitfalls associated with poor SSL certificate management, and how the right SSL certificate management tool can help.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.