Feeds

Google Android - a sneak preview

What's in it for developers?

  • alert
  • submit to reddit

The essential guide to IT transformation

Google invited developers to its London office for one of three workshops - the others being in Munich and Tel Aviv to spread the word and teach developers how to write for their new OS. Another event will be held in Boston on February 23rd (check at the blog for an announcement). Here's what they told us. The mantra for Android is that it’s "a complete and modern embedded OS, with a cutting edge mobile user experience, a world class software stack for building apps and open platform for developers users and industry". That of course breaks into lots of different specifics some of which are more solid than others. Computer people coming to mobile have a very different view of phone architecture to phone people adding features. Phone people see the phone functions - the GSM chipset, Bluetooth, DVB-H, for example, as a foundation, with drivers on top. Then there's an abstraction layer, an operating system, a user interface framework and the applications on top.

Computer people look at the system as a processor with a BIOS on top, then an OS, framework and applications. The bits that mobile phone people see as a foundation, the computer people see as an adjunct connected by drivers. Voice is just another application. And this approach was reflected yesterday.

Google are computer people. In this model Google’s openness does go all the way down, with lots of the proprietary bits off the side. In a phone model, Google only does the top layers.

What's included - and what's missing

The lowest level of this is a Linux 2.6 kernel which works as a Hardware Abstraction Layer to support the memory management, display driver, camera driver, Bluetooth, flash memory, USB, keypad, audio and power management. Note, this doesn't by itself let you get at the GSM stacks and chipset. Google is therefore reliant on the hardware vendors to supply drivers, or at least the tools to allow developers to write the drivers. With Qualcomm, Intel, Marvell, Broadcom and Texas Instrument as partners, that's quite optimistic.

Google supplies a number of libraries including the Surface Manager, which is the system that controls what goes into the framebuffer (the system manager for 2D primitives); a media framework (provided by Real), SQLlite, openGLS, Freetype, Webkit, SGL, SSL, IBC. Developers reported that 2D was faster using OpenGL than SGL, but as we've not yet seen real hardware, this will be down to the implementation.

Google is pleased with the speed of their software 3D rendering, but really expect that devices will ship with hardware acceleration. Some developers were worried about testing on lots of different screen resolutions. In practice this is less of a problem. The display manufacturers only make a limited number of sizes. The basic ones – 96x64, 128x128 and 128x160 are all too small for a smartphone. You might get a few at 176x220, but the vast majority of Android phones will be 320 x 240.

The real magic is the Android runtime called Dalvik. This is a custom virtual machine designed to be a better embedded OS. It's a register-based Virtual Machine, and therefore more efficient in an embedded environment than a traditional Java Virtual Machine; core libraries interact with the Java Harmony project. You may write in Java, but the byte code is Dalvik.

Dalvik uses .dex byte code files and Java class files are converted to .dex. The .dex structure allows processes to share system classes, saving memory.

It might be better optimised for the ARM foundation of a mobile phone but it sacrifices the maturity of J2ME, which has been through more than a decade of growing pains and has a lot of add-ons in the form of JSRs (Java Special Requests). Dalvik will have to re-invent all that. Some of the Open Handset Alliance members are JVM companies, and we'll see a traditional JVM for Android.

So all initial Android development is in Dalvik, thus disappointed many of the developers who were looking for a system which was better at hitting the metal of a phone than Symbian.

Secure remote control for conventional and virtual desktops

Next page: What's missing

More from The Register

next story
6 Obvious Reasons Why Facebook Will Ban This Article (Thank God)
Clampdown on clickbait ... and El Reg is OK with this
So, Apple won't sell cheap kit? Prepare the iOS garden wall WRECKING BALL
It can throw the low cost race if it looks to the cloud
EE fails to apologise for HUGE T-Mobile outage that hit Brits on Friday
Customer: 'Please change your name to occasionally somewhere'
Time Warner Cable customers SQUEAL as US network goes offline
A rude awakening: North Americans greeted with outage drama
We need less U.S. in our WWW – Euro digital chief Steelie Neelie
EC moves to shift status quo at Internet Governance Forum
BT customers face broadband and landline price hikes
Poor punters won't be affected, telecoms giant claims
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.