Feeds

Quantum computing firm bags $17m more in funding

D-Wave talks big, investors impressed

Top three mobile application threats

D-Wave Systems has attracted a lot of criticism from computer scientists over claims it has developed a way to create a marketable quantum computer. But whether its technology will ever be viable outside of a laboratory setting or not, investors seem to be eating it up.

The company announced this week that it received $17m in a third round of venture capital funding. International Investment and Underwriting (IIU) of Dublin led the round with added support from existing investors. Vancouver-based D-Wave had already raised more than $40 million in venture funding.

To date, quantum computers have been relegated to mere scientific curiosity. They are massive, complicated, expensive and unproven machines that few computer scientists want to tackle. In addition, in order to obtain the quantum effects, the machines must maintain near-complete isolation from the outside world.

In short, nothing you could stick in a 1U slot.

According to the laws of quantum mechanics, objects at an atomic level can simultaneously occupy two or more places or states at the same time. And despite lacking a total understanding of this strange phenomena, it's utilized as the basis of quantum computing.

A traditional computer represents information as binary bits: either 1 or 0. In a quantum computer, each bit of information — called a qubit — can hold the 1 and 0 state simultaneously. This means one qubit can represent 00, 11, 01 and 10.

This is how you cool a chip

It's a small advantage made theoretically astounding when applied exponentially. Two qubits can represent 16 values, four qubits can represent 256, six qubits can represent 4096, and so on. Problems that would have taken years to solve on a traditional computer could theoretically take seconds on a quantum box.

[Update: A number a you have taken exception to the description of quantum computers provided in this article. We've amended the story to note the exponential as opposed to linear growth of values that can be achieved through qubits. An embarrassing mistake.

In addition, we were perhaps a bit brief in describing the principles behind and advantages of quantum computing.

Thank you for the comments correcting our errors and for your insights. - Ed]

D-Wave's own machine, Orion, has yet to progress beyond 28 qubits. But the company has said it will be able to fab a chip housing up to 1,024 qubits by the end of 2008. In addition, the company claims it's found a way to make a quantum chip design based on standard semiconductor manufacturing techniques.

The D-Wave chip is made from aluminum and niobium, elements that when made sufficiently cold (near absolute zero) form a superconductor. Electrons in the superconductor bind together into particles called "Cooper pairs", which can occupy the same quantum state. An electrical current is run through, and by calculating the pattern and timing the magnetic fields created, quantum calculations are possible.

D-Wave first publicly demonstrated the Orion last February at the Computer History Museum in Mountain View, California, and in November at a supercomputing conference in Reno.

The company's disposition for hype in addition to lofty promises about the immediate viability of quantum computing have earned D-Wave a fair share of critics. They argue D-Wave hasn't shown any evidence its design will be able to scale to the magnitude they are promising. A taster of that skepticism can be found here, at the Quantum Pontiff blog.

But investors apparently are more than willing to take a massive gamble on D-Wave's promises. ®

High performance access to file storage

More from The Register

next story
This time it's 'Personal': new Office 365 sub covers just two devices
Redmond also brings Office into Google's back yard
Kingston DataTraveler MicroDuo: Turn your phone into a 72GB beast
USB-usiness in the front, micro-USB party in the back
Dropbox defends fantastically badly timed Condoleezza Rice appointment
'Nothing is going to change with Dr. Rice's appointment,' file sharer promises
Inside the Hekaton: SQL Server 2014's database engine deconstructed
Nadella's database sqares the circle of cheap memory vs speed
BOFH: Oh DO tell us what you think. *CLICK*
$%%&amp Oh dear, we've been cut *CLICK* Well hello *CLICK* You're breaking up...
Just what could be inside Dropbox's new 'Home For Life'?
Biz apps, messaging, photos, email, more storage – sorry, did you think there would be cake?
AMD's 'Seattle' 64-bit ARM server chips now sampling, set to launch in late 2014
But they won't appear in SeaMicro Fabric Compute Systems anytime soon
Amazon reveals its Google-killing 'R3' server instances
A mega-memory instance that never forgets
prev story

Whitepapers

Top three mobile application threats
Learn about three of the top mobile application security threats facing businesses today and recommendations on how to mitigate the risk.
Combat fraud and increase customer satisfaction
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
SANS - Survey on application security programs
In this whitepaper learn about the state of application security programs and practices of 488 surveyed respondents, and discover how mature and effective these programs are.