Feeds

Boffins: Antimatter comes from black holes, neutron stars

'No one could have expected so much unexpectedness'

Application security programs and practises

Topflight astrophysics boffins believe they may have cracked the tricky problem of how to make antimatter, which would be useful for many purposes: for instance powering relatively practical starships, or - of course - blowing up an entire planet in one go. However, it appears that making antimatter requires the possession of a black hole or a neutron star, so it won't be happening any time soon.

For those few readers who don't know, antimatter is like normal matter but with properties reversed. Thus a normal electron of the type used to publish this article has a negative charge*, but an anti-electron (aka positron) is positive.

The clever thing about antimatter is that when it bumps into normal matter the two annihilate each other completely, converting entirely into energy according to Einstein's famous formula E=mc2. This is the most powerful fuel-to-energy generation process possible - it makes an H-bomb look like a cap pistol. Some form of antimatter-powered drive might actually allow humans to travel between the stars within their own lifetimes under Einsteinian physics.

The energy created when electrons and positrons meet is emitted in the form of gamma rays. Back in the 1970s the existence of antimatter in the universe was verified in the obvious way - by sending gamma-ray detectors into the upper atmosphere on balloons.

According to the balloon detectors, there seems to be a large cloud of positrons throughout the centre of our galaxy, about 10,000 lightyears across and giving off the energy of 10,000 suns from constant antimatter annihilation as it reacts with ordinary electrons. But nobody knew why or how the antimatter was being created in the first place.

Now, however, that conundrum seems to have been solved.

"I think I can hear a collective sigh of relief," said Marvin Leventhal, a noted brainbox active in the field.

It seems that an international team of astrophysicists boiled down four years' worth of data from the European Space Agency (ESA) satellite INTEGRAL (INTErnational Gamma Ray Astrophysics Laboratory). They noted that the glowing gamma-ray positron cloud bulged significantly in the direction of Galactic west.

The positron cloud bulge coincided with a region in which there are believed to be a lot of binary star systems containing neutron stars or the even more outrageous black holes. These star systems are known as "hard low-mass X-ray binaries".

According to NASA, this strongly suggests that "these binaries are churning out at least half of the antimatter, and perhaps all of it."

Rival boffins had of late been suggesting that the antimatter was actually created by some process involving dark matter, but NASA's Gerry Skinner pooh-poohed such notions.

"The INTEGRAL results seem to rule out dark matter," he said.

"Simple estimates suggest that about half and possibly all the antimatter is coming from X-ray binaries," added his colleague Georg Weidenspointer of Germany's Max Planck Institute for Extraterrestrial Physics.

Weidenspointer, Skinner and Leventhal published their findings in the current issue of Nature.

Nobody knows exactly how black holes and neutron stars make antimatter, however. Nor is it clear how the antimatter gets away from such massive gravity fields, to drift about the Galactic core getting annihilated.

"We expected something unexpected, but we did not expect this," said Skinner, rather splendidly, suggesting that nobody could have expected so much unexpectedness.

NASA presumes to trump INTEGRAL by launching GLAST, the Gamma-ray Large Area Space Telescope, this year. The space agency says its new satellite "may help clarify" the business of antimatter production; also that it might allow the detection of other, larger antiparticles rather than just positrons. ®

*Possibly explains a lot from a literary viewpoint.

Build a business case: developing custom apps

More from The Register

next story
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Application security programs and practises
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Securing Web Applications Made Simple and Scalable
Learn how automated security testing can provide a simple and scalable way to protect your web applications.