Feeds

Graphene breakthrough threatens silicon's chip glory

This time they mean it

Secure remote control for conventional and virtual desktops

For years graphene has proved a cruel temptress for the semiconductor avant garde. The material - a layer of carbon atoms grouped in the ever popular honeycomb lattice - promised major performance gains over silicon. The problem with the stuff, however, has been arranging it in a large enough layer to replicate the 8- to 12-inch circular wafers favored by the major chip makers.

Some researchers at Princeton University believe they've overcome this problem by routing around it altogether. Stephen Chou, a professor of electrical engineering at Princeton, and his big brained underlings decided to pop small crystals of graphene "only in the active areas of the chip."

We'll let the wise people at Princeton explain the ins and outs.

In their new method, the researchers make a special stamp consisting of an array of tiny flat-topped pillars, each one-tenth of a millimeter wide. They press the pillars against a block of graphite (pure carbon), cutting thin carbon sheets, which stick to the pillars. The stamp is then removed, peeling away a few atomic layers of graphene.

Finally, the stamp is aligned with and pressed against a larger wafer, leaving the patches of graphene precisely where transistors will be built. The technique is like printing, Chou said. By repeating the process and using variously shaped stamps (the researchers also made strips instead of round pillars), all the active areas for transistors are covered with single crystals of graphene.

One innovation that made the technique possible was to coat the stamp with a special material that sticks to carbon when it is cold and releases when it is warm, allowing the same stamp to pick up and release the graphene.

Excited by their new technique, Chou and friends then went ahead and built transistors right onto the printed graphene crystals. Apparently, this resulted in a 10x boost over silicon transistors in moving, er, "electronic holes," which is a subject about which we won't claim deep knowledge.

The researchers believe the technology could make its way very quickly into devices such as cell phones "that require high power output."

“What we have done is shown that this approach is possible; the next step is to scale it up,” Chou said.

There's a paper on the new technology, but it's locked behind this abstract. ®

Providing a secure and efficient Helpdesk

More from The Register

next story
TEEN RAMPAGE: Kids in iPhone 6 'Will it bend' YouTube 'prank'
iPhones bent in Norwich? As if the place wasn't weird enough
iPAD-FONDLING fanboi sparks SECURITY ALERT at Sydney airport
Breaches screening rules cos Apple SCREEN ROOLZ, ok?
Crouching tiger, FAST ASLEEP dragon: Smugglers can't shift iPhone 6s
China's grey market reports 'sluggish' sales of Apple mobe
Apple's new iPhone 6 vulnerable to last year's TouchID fingerprint hack
But unsophisticated thieves need not attempt this trick
The British Museum plonks digital bricks on world of Minecraft
Institution confirms it's cool with joining the blocky universe
How the FLAC do I tell MP3s from lossless audio?
Can you hear the difference? Can anyone?
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.