Feeds

Get into data with Groovy

Part 2: Object grabber

5 things you didn’t know about cloud backup

Of course, under the surface there's still some SQL going on and we can look at it if we want to using the sql and parameters properties of the DataSet. For example, in the case of not_harry this maps to:

println not_harry.sql
println not_harry.parameters

Which gives us:

select * from users where (user_id > ? and user_name != ?)
[2, "harry"]

Can we go further with a DataSet? So far we've restricted ourselves to querying and filtering table data. What if we want to write data back to the database? The good news is that you can add new rows of data, the bad news is that deletes or updates are not yet implemented. We'll have to hope and wait for a future release that adds this functionality.

To illustrate the add row functionality we're going to implement a common enough scenario - we're going to populate our MySQL table with data that's been dumped from a spreadsheet or another RDBMS into a CSV file. It's the kind of data manipulation task that scripting languages traditionally excel at.

The first thing to do is work out how to grab the data from the CSV file and parse it correctly. Here's an extract from our users.csv file:

fred,fred@flintstone.com,10
barney,barney@rubble.net,11
wilma,wilma@flintstone.co.uk,12
bambam,bambam@bambam.org,13
betty,betty@betty.com,14

As should be clear, Groovy is big on iterators, and in this case we can just grab the file and iterate over each line, splitting it on the comma character. As a test we can run the following code:

new File('users.csv').splitEachLine(',') {fields ->
  println fields[0] + " " + fields[1] + " " + fields[2]
  }

Here each line is parsed, tokenised on the comma and bound to a variable that's called fields. The above code will cycle through each line of the file and print the different fields for us. What we want to do next is add each line of data to the database, but instead of INSERT queries we're going to use our DataSet directly:

new File('users.csv').splitEachLine(',') {fields ->
  ds.add(
    user_name: fields[0],
    user_id: fields[2],
    email: fields[1]
  )
}
  
ds.each { println it.user_name }

Running the above code will add the rows from the CSV file and then dump the list of user_names to verify that it's worked.

In just a few lines of code we've managed to read a file, parse it, and then add the data to a database, with minimal amounts of house-keeping code or boilerplate Java.

Of course, the fact the DataSet only works on tables and not on more complex structures (such as the result of a JOIN) means you can't get away from using SQL altogether, but Groovy makes it easy to mix and match approaches. And in the case of complex queries, it's fairly straightforward to use the Sql object to create a database view and then to use the DataSet object to access that.

In all then, Groovy offers a set of high-level objects that make database interaction a relative breeze. ®

Gartner critical capabilities for enterprise endpoint backup

More from The Register

next story
Why has the web gone to hell? Market chaos and HUMAN NATURE
Tim Berners-Lee isn't happy, but we should be
Apple promises to lift Curse of the Drained iPhone 5 Battery
Have you tried turning it off and...? Never mind, here's a replacement
'Stop dissing Google or quit': OK, I quit, says Code Club co-founder
And now a message from our sponsors: 'STFU or else'
Microsoft boots 1,500 dodgy apps from the Windows Store
DEVELOPERS! DEVELOPERS! DEVELOPERS! Naughty, misleading developers!
Linux turns 23 and Linus Torvalds celebrates as only he can
No, not with swearing, but by controlling the release cycle
Scratched PC-dispatch patch patched, hatched in batch rematch
Windows security update fixed after triggering blue screens (and screams) of death
This is how I set about making a fortune with my own startup
Would you leave your well-paid job to chase your dream?
prev story

Whitepapers

Best practices for enterprise data
Discussing how technology providers have innovated in order to solve new challenges, creating a new framework for enterprise data.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?