Feeds

Get into data with Groovy

Part 2: Object grabber

Remote control for virtualized desktops

Hands on In the first part of this two-part series we looked at how Groovy provides a simple and intuitive approach to accessing MySQL. Compared to Java, Groovy is less verbose and more focused on what the developer wants to do with the database.

Additionally, things like opening and closing database connections, writing boilerplate code to handle exceptions and other house-keeping activities are hidden from the developer.

However, there's more to Groovy's database abilities than syntactic sugar sweetening Java's JDBC architecture. Having used the Sql object, let's turn to Groovy's DataSet object.

Where the Sql object uses SQL to interact with the database, the DataSet hides SQL completely, and instead grabs rows of data, each of which is stuffed directly into a map - the data structure also known as a dictionary or associative array in other languages. A map stores data as key/value pairs, and in this particular case the keys are database fields and the values are data points.

A quick example will make all of this clear, and as before we'll work with our users table from the pers database. We create a DataSet as follows:

import groovy.sql.Sql
import groovy.sql.DataSet
def sql = Sql.newInstance("jdbc:mysql://192.168.16.175:3306/pers", "pan","regdev", "com.mysql.jdbc.Driver")
def ds=sql.dataSet('users')

We connect to MySQL using Sql.newInstance and then use the dataSet method to create the DataSet. The first thing to note is that instead of a SQL query we just give the name of the table, and it's the complete table that is returned. We can take a look at the data using the rows method as follows:

x=ds.rows()
x.each { println it }

Putting the previous code into a file called ds.groovy and running it from the command-line gives us the following result:

["user_name":"tom", "user_id":1, "email":"tom@here.com"] ["user_name":"dick", "user_id":2, "email":"dick@there.co.uk"] ["user_name":"harry", "user_id":3, "email":"harry@harry.com"] ["user_name":"george", "user_id":4, "email":"hello@hello.org"]

In other words, each row contains a map of key: value pairs, where the key is the field name and the value is the content of that field for the record.

So far so good, but how much value is there in simply being able to grab complete tables from MySQL into a Groovy data structure? Plenty.

Firstly, we can access individual columns in a very straightforward manner. Want to grab all of the user names? Try this:

x.each {println it.user_name}

How about some filtering of data? Say we want to grab only those users who have a user_id > 2. Rather than doing a SELECT WHERE query, we can use the DataSet directly:

over_2 = x.findAll { it.user_id > 2 }
over_2.each { println it.user_name }

All of this without having to requery the data. And you can chain query clauses, say you want all users with a user_id >2 and a user_name not equal to harry:

not_harry = ds.findAll { it.user_id > 2 && it.user_name != 'harry' }
not_harry.each { println it.user_name }

Beginner's guide to SSL certificates

More from The Register

next story
Download alert: Nearly ALL top 100 Android, iOS paid apps hacked
Attack of the Clones? Yeah, but much, much scarier – report
NSA SOURCE CODE LEAK: Information slurp tools to appear online
Now you can run your own intelligence agency
Microsoft: Your Linux Docker containers are now OURS to command
New tool lets admins wrangle Linux apps from Windows
First in line to order a Nexus 6? AT&T has a BRICK for you
Black Screen of Death plagues early Google-mobe batch
Microsoft adds video offering to Office 365. Oh NOES, you'll need Adobe Flash
Lovely presentations... but not on your Flash-hating mobe
You stupid BRICK! PCs running Avast AV can't handle Windows fixes
Fix issued, fingers pointed, forums in flames
prev story

Whitepapers

Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
10 threats to successful enterprise endpoint backup
10 threats to a successful backup including issues with BYOD, slow backups and ineffective security.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security and trust: The backbone of doing business over the internet
Explores the current state of website security and the contributions Symantec is making to help organizations protect critical data and build trust with customers.