Feeds

Hands on with MDX

Dimension and measures (yes, but can it handle cubic furlongs?)

Intelligent flash storage arrays

Following our introduction to MDX (to be found here) this follow-up article is a get-you-started guide to using this powerful language to manipulate multi-dimensional data.

The basics

Relational databases store data in two-dimensional tables, a familiar concept that mimics grids of data on paper. Multi-dimensional data is fundamentally different and is stored as dimensions and measures. Dimensions describe the data: examples are Products (the items we sell), Location (where sales take place) and Time. Measures are usually numeric, like Units Sold, Sales and Budget.

We can see the principle of multi-dimensional data in a very simple two-dimensional structure. Here there are two descriptive dimensions – Products in the rows and Time in the columns. There is one numerical measure, Units Sold.

Units Sold

Jan Feb Mar Apr
Apples 125 45 78 169
Figs 74 53 89 39
Lemons 20 21 25 14
Pears 220 74 103 156

But, unlike tables in a relational database, we aren’t limited to two dimensions. Add a third – Location - and we get a 3-D cube of data.

As before the rows show Products and the columns show Time. The slices that give the cube depth show the additional Location dimension. The values held at the intersections of all three dimensions are the Units Sold. (For simplicity only four values are shown). The green cell shows the number of lemons sold in Chicago in April.

Dimensions contain members and here each dimension has four: Chicago, London, Paris and New York are the four members in the Location dimension.

A multi-dimensional data structure can have many more dimensions, and this is where any visualisation technique breaks down. We humans live in a 3-D world and imagining further dimensions is hard: however, the cube analogy is a good starting point for understanding the principle behind multi-dimensional structures. (Not entirely coincidentally, multi-dimensional OLAP structures are commonly called cubes).

Hierarchies, levels and aggregations

Dimensions are often hierarchical which enables them to hold data at different levels. A Time dimension is almost invariably hierarchical and typical levels might be years, quarters and months.

Hierarchies usually have an All level at the top to give a grand total of all data, with levels below. In this case the Year level contains members for 2006 and 2007, each of these is divided into four quarters and each quarter into three months. (Not all the months are shown.) This hierarchy lets us look at the Units Sold measure for each time period: all fig sales in a particular year, quarter or month.

During the cube-building process, data for the lowest level, called the leaf level (monthly values here but could be weekly, daily, whatever) is combined to give the higher values, quarters combine into years, and years into All. These calculated values are called aggregations.

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
Preview redux: Microsoft ships new Windows 10 build with 7,000 changes
Latest bleeding-edge bits borrow Action Center from Windows Phone
Google opens Inbox – email for people too thick to handle email
Print this article out and give it to someone tech-y if you get stuck
Microsoft promises Windows 10 will mean two-factor auth for all
Sneak peek at security features Redmond's baking into new OS
UNIX greybeards threaten Debian fork over systemd plan
'Veteran Unix Admins' fear desktop emphasis is betraying open source
Entity Framework goes 'code first' as Microsoft pulls visual design tool
Visual Studio database diagramming's out the window
Google+ goes TITSUP. But WHO knew? How long? Anyone ... Hello ...
Wobbly Gmail, Contacts, Calendar on the other hand ...
DEATH by PowerPoint: Microsoft warns of 0-day attack hidden in slides
Might put out patch in update, might chuck it out sooner
Ubuntu 14.10 tries pulling a Steve Ballmer on cloudy offerings
Oi, Windows, centOS and openSUSE – behave, we're all friends here
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.