Feeds

Nanotubes offer self-mending aircraft wings, golf clubs

Teeny pipes. Is there anything they can't do?

SANS - Survey on application security programs

Aerospace boffins in America have come up with yet another use for carbon nanotubes - to build a self-healing layer into composite structures such as aircraft wings.

Structural components made out of polymer composites are just great, as everyone knows. They can be lighter and tougher than metal alloys, allowing aircraft - or bicycles, or whatever - to carry more or be stronger for the same weight. This allows comfier or faster bikes, nonmetallic airliners which potentially carry people using less fuel, advanced fighter jets which can perform amazing manoeuvres and not crack up, better golf clubs, tennis rackets, etc etc.

Just like metal, however, composites can be subject to tiny surface cracks which can rob them of their strength and lead to catastrophic failures if they aren't sorted out. But researchers at Rensselaer Polytechnic Institute in New York state think they have the answer.

The idea is to embed a fine grid of wires in a given composite surface, covered in an epoxy matrix full of nanotubes. By sending pulses down wires, it becomes possible to know as soon as a crack appears because the electrical resistance of the nanotube-laden epoxy will have changed. The fact that the wires are in a transverse grid also furnishes an exact location. That's good, because finding small cracks is a big maintenance issue.

"The beauty of this method is that the carbon nanotubes are everywhere. The sensors are actually an integral part of the structure, which allows you to monitor any part of the structure," according to Rensselaer assistant prof Mikhil Koratkar.

Unlike existing ultrasonic testing, Koratkar's coating can also test materials while they are in use; as when a plane is in flight.

But it gets better. The Rensselaer guys think you should then be able to send a higher-energy current down the wires. This will cause the nanotubes to heat up, melting ingredients in the epoxy so as to fill up and re-bond the crack automatically, as soon as it appears. This process could occur automatically, as soon as a crack was detected, controlled perhaps by an aircraft's computers.

"What's novel about this application is that we're using carbon nanotubes not just to detect the crack, but also to heal the crack," says Koratkar. He reckons that 70 per cent of the material's original strength can be recovered/retained, preventing catastrophic failures. The self-repair coating - in the Rensselaer tests - weighed only one per cent of what the uncoated structure did.

This could be good news for Boeing's new composite Dreamliner, which has had doubts cast on its safety lately. Thus far, even the best metallic aircraft haven't offered the ability to make structural repairs automatically in mid-air.

Not to mention the possibilities for self-healing golf clubs. ®

Top three mobile application threats

More from The Register

next story
Red-faced LOHAN team 'fesses up in blown SPEARS fuse fiasco
Standing in the corner, big pointy 'D' hats
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
Fancy joining Reg hack on quid-a-day challenge?
Recruiting now for charity starvation diet
LOHAN's Punch and Judy show relaunches Thursday
Weather looking good for second pop at test flights
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
Curiosity finds not-very-Australian-shaped rock on Mars
File under 'messianic pastries' and move on, people
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
Top Secret US payload launched into space successfully
Clandestine NRO spacecraft sets off on its unknown mission
prev story

Whitepapers

Designing a defence for mobile apps
In this whitepaper learn the various considerations for defending mobile applications; from the mobile application architecture itself to the myriad testing technologies needed to properly assess mobile applications risk.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.