Feeds

Boffins go dotty over quantum teleportation

No 'beaming up' was involved

Remote control for virtualized desktops

Researchers at the University of Singapore have demonstrated that it is possible to "teleport" information from one so-called quantum dot to another.

The team used a computer model to show that decoherence, the tendency of quantum information to leak into the environment, is not a problem when working on such a small scale, and that quantum information about one dot can be transferred to another without loss.

Quantum dots are large clusters of atoms that can be described by a single quantum state, in the same way that an atom is. This makes them ideal candidates for use as quantum bits, or qbits, in quantum computing.

They used a computer model to study the transfer or swapping of states between two dots, and determined that it can be done perfectly, under certain very specific conditions. The model revealed that the fidelity of the teleportation is proportional to the entanglement of the two dots, and that a two-dot system would still work under a moderate amount of decoherence.

(Entanglement means that the mathematical description of one dot must refer to the other dot, regardless of how far apart from one another they are. Decoherence is the fact of information being lost by a system through interaction with the environment.)

In theory the work paves the way for functioning large scale quantum computers, which depend on being able to move information around, just like normal computers do. But the reality may be a bit more complex.

Professor Ben Murdin, head of the Photonics group at the University of Surrey says he remains cautious.The real test of all these systems comes when you try to scale up.

"It is relatively easy to build one or two identical quantum dots. The problem comes when you want more than that."

Making identical dots is hard enough, he explained. Making more is even harder because you increase your chances of making an error. Even if you could replicate your original dot multiple times without errors, you run into serious problems with information loss caused by the decoherence which increases with the complexity of the system.

"The more dots you have, the more they tend to leak information into the environment, and the less equal they are. Which has a similar sort of effect," he told us. "Essentially, the bigger the system is, the noisier it becomes."

Despite his misgivings, Professor Murdin notes: "This research is a critical step to get quantum computers into real world applications. Right now, information is whizzing around all over the place on your computer. Quantum information will only really be useful once we can move it around, too.

"But as to when we will see a quantum computer for sale...that is a tough question."

The research is by K.W. Choo and L. C. Kwek, entitled Quantum dot as a resource for teleportation and state swapping and published in Phys. Rev. B 75 205321 (2007). ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Rosetta science team thinks Philae might come to life in the spring
And disclose the biggest surprise of Comet 67P
prev story

Whitepapers

Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Why CIOs should rethink endpoint data protection in the age of mobility
Assessing trends in data protection, specifically with respect to mobile devices, BYOD, and remote employees.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Seattle children’s accelerates Citrix login times by 500% with cross-tier insight
Seattle Children’s is a leading research hospital with a large and growing Citrix XenDesktop deployment. See how they used ExtraHop to accelerate launch times.