Feeds

Robot brains? Can't make 'em, can't sell 'em

Why dopes still beat boffins

High performance access to file storage

At every level, even specialists lack conceptual clarity.Let's look at a few examples taken from current academic debates.

We lack a common mathematical language for generic sensory input - tactile, video, rangefinder - which could represent any kind of signal or mixed-up combination of signals. Vectors? Correlations? Templates?

Imagine this example. If one were to plot every picture from a live video-feed as a single "point" in a high-dimensional space, a day's worth of images would be like a galaxy of stars. But what shape would that galaxy have: a blob, a disk, a set of blobs, several parallel threads, donuts or pretzels? At the point scientists don't even know the structure in real-world data, much less the best ways to infer those structures from incomplete inputs, and to represent them compactly.

And once we do know what kind of galaxies we're looking for, how should we measure the similarity or difference between two example signals, or two patterns? Is this "metric" squared-error, bit-wise, or probablistic?

Well, in real galaxies, you measure the distance between stars by the usual Pythagorean formula. But in comparing binary numbers, one typically counts the number of different bits (which is like leaving out Pythagorus' square root). If the stars represented probabilities, the comparisons would involve division rather than subtraction, and would probably contain logarithms. Choose the wrong formula, and the algorithm will learn useless features of the input noise, or will be unable to detect the right patterns.

There's more: the stars in our video-feed galaxy are strung together in time like pearls on a string,in sequence. but we don't know what kind of (generic) patterns to look for among those stars -linear correlations, data-point clusters, discrete sequences, trends?

Perhaps every time one image ("star") appears, a specific different one follows, like a black car moving from left to right in a picture. Or maybe one of two different ones followed, as if the car might be moving right or left. But if the car is black, or smaller (two very different images!), would we still be able to use what we learned about large black moving cars? Or would we need to learn the laws of motion afresh for every possible set of pixels?

The problems don't end there. We don't know how to learn from mistakes in pattern-detection, to incorporate errors on-the-fly. Nor do we know how to assemble small pattern-detection modules into usefully large systems. Then there's the question of how to construct or evaluate plans of action or even simple combinations of movements for the robot.

Academics are also riven by the basic question of whether self-learning systems should ignore surprising input, or actively seek it out? Should the robot be as stable as possible, or as hyper-sensitive as possible?

If signal-processing boffins can't even agree on basic issues like these, how is Joe Tinkerer to create an autonomous robot himself? Must he still specify exactly how many pixels to count in detecting a wall, or how many degrees to rotate each wheel? Even elementary motion-detection - "Am I going right or left?" - is way beyond the software or mathematical prowess of most homebrew roboticists.

High performance access to file storage

More from The Register

next story
Video games make you NASTY AND VIOLENT
Especially if you are bad at them and keep losing
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
Solar-powered aircraft unveiled for round-the-world flight
It's going to be a slow and sleepy flight for the pilots
Russian deputy PM: 'We are coming to the Moon FOREVER'
Plans to annex Earth's satellite with permanent base by 2030
LOHAN's Punch and Judy show relaunches Thursday
Weather looking good for second pop at test flights
Saturn spotted spawning new FEMTO-MOON
Icy 'Peggy' looks to be leaving the outer rings
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
India's GPS alternative launches second satellite
Closed satnav system due to have all seven birds aloft by 2016
Curiosity finds not-very-Australian-shaped rock on Mars
File under 'messianic pastries' and move on, people
prev story

Whitepapers

Mainstay ROI - Does application security pay?
In this whitepaper learn how you and your enterprise might benefit from better software security.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.