Feeds

Robot brains? Can't make 'em, can't sell 'em

Why dopes still beat boffins

Next gen security for virtualised datacentres

The current generation of "consumer robots" is driven mostly by robot-love: people enjoy things which move around on their own, especially if they can build or tinker with the gadgets themselves.   That much became clear at a recent symposium on Robots, which I described here last month. The consumer robot business today is manned by avid tinkerers because there is neither a technology for autonomous gadgets, nor a business model to support them even if they did exist.

Robot bacterium?

At the symposium, your reporter posed the following question to the panel:

"The three commercial presenters offer consumer products with pre-programmed behaviors about equal to those of a bacterium.  The lone researcher demonstrated fancier computer vision, but it took a dozen graduate students a year to develop, and is still extremely simple and pre-programmed. When can we expect our robots to have the sophistication, responsiveness, and robustness of - say - a mouse?"

No one answered the question, of course, but the most enlightening response came from Colin Angle, CEO of iRobot (which manufactures the autonomous vacuum-cleaning Roomba):

"The Roomba is actually very sophisticated: it has a multi-threaded operating system, and was built by over a hundred computer scientist and a dozen PhDs," he replied. 

He's right, of course. The Roomba really is a sophisticated piece of computer engineering - but sophistication by computer standards does not translate to biological sophistication.  I was tempted to respond that  bacteria are also multi-threaded - they can grow and eat and reproduce and move all at the same time, too.  Unfortunately, Angle's PhDs have the unenviable task of reproducing in silicon what Nature has spent a billion years on. 

iRobot's Roomba is a great example of how very hard real-life robotics is.  The task for the disk-shaped rolling vacuum seems simple:  roam around a room, vacuum up dirt, and come back to the dock in time to recharge.  But to accomplish that task, the Roomba needs infra-red locators and "virtual walls" spread around the room to keep it from getting lost elsewhere in the house.

Perhaps the hardest task is to avoid "getting stuck": not just physically getting wedged somewhere, but  running in circles or vacuuming the same region over and over.  Merely detecting "stuck-ness" from its sensor data required vast amounts of trial-and-error programming, as did delineating how to recover.  Meanwhile, the iRobot corporation has been obliged to simplify the hardware mercilessly, so that the whole package of motors/wheels/vacuum/software is affordable - say below $200 - an economising which leaves little room to develop sophisticated planning and "intelligence."

Moore's Law for gears

Angle's clever lament on the business of building such gadgets - "Moore's law doesn't apply to gears" - masks a deeper truth.  What he means is that mechanical or hardware costs have not dropped as fast as chips, memory, and bandwidth, so that the robotic "industry" has not had the same exponential growth as communications and computation. He could also mean that selling physical gadgets entails much more than simply assembling them; it means repairing them and offering warrantees (an obligation that click-wrap software has wriggled out of), and even ensuring the safety of customers from potential robots-run-amok.

The truth he didn't mention is that hardware is not the reason we have no intelligent robots. In fact motors, sensors and even processors are very cheap now, and a desktop computer core with a video input and a few motorized wheels could be mass-produced for a few hundred dollars. But the software to animate it is quite literally priceless, because it doesn't yet exist. Worse, no one even knows the principles on which to write it.

Here's why.

Missing the basics

Of course people can write software specialized for specific hardware to to a specific task (like the Roomba), but such programs won't generalize to new hardware, sensors, and environments: no one yet has software which "learns" the way brains do, mostly because science doesn't even know what brains do. If we don't understand how we (or even mice) interact gracefully with an uncertain world, how could we expect to program anything else to?

Secure remote control for conventional and virtual desktops

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
Volcanic eruption in Iceland triggers CODE RED aviation warning
Lava-spitting Bárðarbunga prompts action from Met Office
LOHAN Kickstarter breaks NINETEEN THOUSAND of your EARTH POUNDS
That's right, OVER 9,000 beer tokens - and counting
Major cyber attack hits Norwegian oil industry
Statoil, the gas giant behind the Scandie social miracle, targeted
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.