Feeds

Boffins put encrypted bio-copyright watermarks in beer DNA

No knocking off Blade Runner pleasure replicants

Intelligent flash storage arrays

German boffins believe they have developed a computer algorithm which can be used to hide encrypted "watermarks" within the DNA of living genetically-modified organisms. The procedure has been successful in simulated tests on live beer ingredients.

Dominik Heider and Angelika Barnekow of the Department of Experimental Tumorbiology at the University of Muenster explain their techniques in an academic paper released last month.

The two boffins' research is aimed at "the application of watermarks based on DNA sequences to identify the unauthorised use of genetically modified organisms (GMOs) protected by patents". The idea is that a patented GM organism - such as a crop, a drug or perhaps in future a Blade Runner-style engineered human replicant - might be pirated by unscrupulous rival manufacturers, who could then produce ripoff copies without doing any development work.

Not if Heider and Barnekow have anything to do with it, though. Dodgy supermarket-carpark pleasure clones or whatnot would be easily identified as branded product using the DNA watermark, hidden among the information in their cells just as a microdot holding a hidden page of text can masquerade as a full stop on a sheet of paper.

Of course, without encryption, the ripped bio-products could be easily given fake branding in the same fashion as a knockoff Rolex. The German boffins' bio-stegano-cryptograms, however, take that into account. Rather than an obvious image or text, the hidden DNA info would be encrypted. Their computer program, DNA-Crypt, can be combined with binary encryption algorithms like AES, RSA or Blowfish, or can be used with one-time pads.

Apparently that's fairly yawn-worthy in the world of biosteganocrypto-boffinry - Heider and Barnekow cite several previous researchers who've hidden encrypted messages in DNA. The Germans' special sauce is that their DNA-Crypt program can deal with the occurrence of mutations, in which the DNA of the organism in question changes unpredictably as it reproduces.

"Mutations do not occur very often, approximately 10−10 to 10−15 per cell division, but they can destroy the encrypted information in DNA sequences," according to the Muenster scientists. If a cop or future Replicant-Industry-Association-of-America (RIAA) enforcer checked a mutated sample, the watermark could be reduced to hash and the bio-ripper might get off scot-free.

But the biocopyright-loving boffins reckon they've dealt with this, using "the 8/4 Hamming-code and ... the WDH-code," which are methods of writing to DNA which can provide "not only ... error detection but error corrections which enable us to maintain the data." These methods use up more space than ordinary DNA fiddling, so the DNA-Crypt platform uses an "integrated fuzzy controller" which "decides and recommends whether to use the 8/4 Hamming-code, the WDH-code or no mutation correction for optimal performance." We were especially pleased to hear that it "uses the Singleton-fuzzyfication," which ought to be a great marketing tool if nothing else. ("Nexus 6 pleasure models, verified genuine by DNA-Crypt™:now with Singleton fuzzyfication for optimal performance.")

Heider and Barnekow have done successful tests of their procedure on Saccharomyces cerevisiae, better known (and loved for its beautiful effects) as brewer's yeast. Less importantly, it's also used to make bread. However, the watermarked brewing yeast trials were only in silico - in computer simulations. No real-world biowatermarked yeast, let alone beer or pleasure/warrior replicants, has yet been produced.

For those interested, the DNA-Crypt code is Java-based (5.0 and higher) and cross-platform: Mac or Linux-using replicant designers can get in on the biowatermarking action.

A preliminary pdf of the research paper is here, and the project homepage - which will apparently offer DNA-Crypt for download in future - is here

Providing a secure and efficient Helpdesk

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
NASA rover Curiosity drills HOLE in MARS 'GOLF COURSE'
Joins 'traffic light' and perfect stony sphere on the Red Planet
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
prev story

Whitepapers

A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.