Feeds

Cars could run on aluminium, say US boffins

'Violent poof' in Purdue lab inspires scientist

Intelligent flash storage arrays

US engineering boffins believe they have found a way to make existing cars run on aluminium pellets.

The process involves generating hydrogen from water onboard the vehicle, which removes the need to store hydrogen in a tank. Fuel-tank design is one of the main challenges facing hydrogen car designers, and at present involves serious difficulties. The insulated cryogenic tank in BMW's Hydrogen Seven demonstrator car, as an example, will lose its entire contents to boil-off in matter of days. This doesn't just strand the vehicle (or compel its driver to use the backup petrol tank): it also means that a fuelled-up Hydrogen Seven can't be parked in an enclosed space, lest a dangerous buildup of explosive gas develop.

But boffins led by Professor Jerry Woodall of Purdue University reckon they've managed to sidestep this snag. In their process, water is combined with an alloy of aluminium and gallium. The aluminium oxidises, releasing gaseous hydrogen which could then be used to fuel a conventional car engine as in the Hydrogen Seven. The role of the gallium additive is to prevent a skin of oxide forming on the surface of the aluminium and allow all the metal to be used.

Woodall came across the reaction by accident in the course of research into semiconductors.

"I was cleaning a crucible containing liquid alloys of gallium and aluminum," he says. "When I added water to this alloy - talk about a discovery - there was a violent poof."*

The only exhaust from a hydrogen-fuelled car engine would be water vapour. However, waste aluminium oxide (or alumina) and gallium would also be produced in this case.

"The gallium doesn't react," says Woodall. "So it doesn't get used up and can be recycled over and over again."

The alumina would also be recycled under Woodall's plan, using a process called fused salt electrolysis. This requires large amounts of electricity (as does the initial production of aluminium from bauxite), so the overall process is essentially a way of storing electric power in aluminium pellets and releasing it as hydrogen at the point of use.

Aluminium at the moment costs $1 per pound, which according to Woodall means that an aluminium/gallium/hydrogen car would cost more to run than than an ordinary one using petrol at $3 to the gallon. But he reckons that recycling the waste alumina at nuclear powerplants would bring the costs down. Cutting out electrical power distribution would enable the juice to be used more efficiently.

"A midsize car with a full tank of aluminum-gallium pellets, which amounts to about 350 pounds of aluminum, could take a 350-mile trip and it would cost $60, assuming the alumina is converted back to aluminum on-site at a nuclear power plant," said the professor.

"How does this compare with conventional technology? Well, if I put gasoline in a tank, I get six kilowatt hours per pound, or about two and a half times the energy than I get for a pound of aluminum. So I need about two and a half times the weight of aluminum to get the same energy output, but I eliminate gasoline entirely, and I am using a resource that is cheap and abundant in the United States. If only the energy of the generated hydrogen is used, then the aluminum-gallium alloy would require about the same space as a tank of gasoline, so no extra room would be needed, and the added weight would be the equivalent of an extra passenger, albeit a pretty large extra passenger."

And converting existing cars wouldn't be too difficult, according to Woodall.

"It's a simple matter to convert ordinary internal combustion engines to run on hydrogen," he says. "All you have to do is replace the gasoline fuel injector with a hydrogen injector."

The process could also potentially be used in combination with hydrogen fuel-cell technology to great advantage.

"When and if fuel cells become economically viable, our method would compete with gasoline at $3 per gallon even if aluminum costs more than a dollar per pound," says Woodall.

More details from Purdue here. ®

*From the hydrogen exploding, we assume

Providing a secure and efficient Helpdesk

More from The Register

next story
SECRET U.S. 'SPACE WARPLANE' set to return from SPY MISSION
Robot minishuttle X-37B returns after almost 2 years in orbit
LOHAN crash lands on CNN
Overflies Die Welt en route to lively US news vid
You can crunch it all you like, but the answer is NOT always in the data
Hear that, 'data journalists'? Our analytics prof holds forth
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
No sail: NASA spikes Sunjammer
'Solar sail' demonstrator project binned
Carry On Cosmonaut: Willful Child is a poor taste Star Trek parody
Cringeworthy, crude and crass jokes abound in Steven Erikson’s sci-fi debut
Origins of SEXUAL INTERCOURSE fished out of SCOTTISH LAKE
Fossil find proves it first happened 385 million years ago
Human spacecraft dodge COMET CHUNKS pelting off Mars
Odyssey orbiter yet to report, though - comet's trailing trash poses new threat
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Cloud and hybrid-cloud data protection for VMware
Learn how quick and easy it is to configure backups and perform restores for VMware environments.
Three 1TB solid state scorchers up for grabs
Big SSDs can be expensive but think big and think free because you could be the lucky winner of one of three 1TB Samsung SSD 840 EVO drives that we’re giving away worth over £300 apiece.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.