Feeds

Cars could run on aluminium, say US boffins

'Violent poof' in Purdue lab inspires scientist

Boost IT visibility and business value

US engineering boffins believe they have found a way to make existing cars run on aluminium pellets.

The process involves generating hydrogen from water onboard the vehicle, which removes the need to store hydrogen in a tank. Fuel-tank design is one of the main challenges facing hydrogen car designers, and at present involves serious difficulties. The insulated cryogenic tank in BMW's Hydrogen Seven demonstrator car, as an example, will lose its entire contents to boil-off in matter of days. This doesn't just strand the vehicle (or compel its driver to use the backup petrol tank): it also means that a fuelled-up Hydrogen Seven can't be parked in an enclosed space, lest a dangerous buildup of explosive gas develop.

But boffins led by Professor Jerry Woodall of Purdue University reckon they've managed to sidestep this snag. In their process, water is combined with an alloy of aluminium and gallium. The aluminium oxidises, releasing gaseous hydrogen which could then be used to fuel a conventional car engine as in the Hydrogen Seven. The role of the gallium additive is to prevent a skin of oxide forming on the surface of the aluminium and allow all the metal to be used.

Woodall came across the reaction by accident in the course of research into semiconductors.

"I was cleaning a crucible containing liquid alloys of gallium and aluminum," he says. "When I added water to this alloy - talk about a discovery - there was a violent poof."*

The only exhaust from a hydrogen-fuelled car engine would be water vapour. However, waste aluminium oxide (or alumina) and gallium would also be produced in this case.

"The gallium doesn't react," says Woodall. "So it doesn't get used up and can be recycled over and over again."

The alumina would also be recycled under Woodall's plan, using a process called fused salt electrolysis. This requires large amounts of electricity (as does the initial production of aluminium from bauxite), so the overall process is essentially a way of storing electric power in aluminium pellets and releasing it as hydrogen at the point of use.

Aluminium at the moment costs $1 per pound, which according to Woodall means that an aluminium/gallium/hydrogen car would cost more to run than than an ordinary one using petrol at $3 to the gallon. But he reckons that recycling the waste alumina at nuclear powerplants would bring the costs down. Cutting out electrical power distribution would enable the juice to be used more efficiently.

"A midsize car with a full tank of aluminum-gallium pellets, which amounts to about 350 pounds of aluminum, could take a 350-mile trip and it would cost $60, assuming the alumina is converted back to aluminum on-site at a nuclear power plant," said the professor.

"How does this compare with conventional technology? Well, if I put gasoline in a tank, I get six kilowatt hours per pound, or about two and a half times the energy than I get for a pound of aluminum. So I need about two and a half times the weight of aluminum to get the same energy output, but I eliminate gasoline entirely, and I am using a resource that is cheap and abundant in the United States. If only the energy of the generated hydrogen is used, then the aluminum-gallium alloy would require about the same space as a tank of gasoline, so no extra room would be needed, and the added weight would be the equivalent of an extra passenger, albeit a pretty large extra passenger."

And converting existing cars wouldn't be too difficult, according to Woodall.

"It's a simple matter to convert ordinary internal combustion engines to run on hydrogen," he says. "All you have to do is replace the gasoline fuel injector with a hydrogen injector."

The process could also potentially be used in combination with hydrogen fuel-cell technology to great advantage.

"When and if fuel cells become economically viable, our method would compete with gasoline at $3 per gallon even if aluminum costs more than a dollar per pound," says Woodall.

More details from Purdue here. ®

*From the hydrogen exploding, we assume

Gartner critical capabilities for enterprise endpoint backup

More from The Register

next story
LOHAN packs bags for SPACEPORT AMERICA!
Spanish launch goes titsup, we're off to the US of A
Gigantic toothless 'DRAGONS' dominated Earth's early skies
Gummy pterosaurs outlived toothy competitors
'Leccy racer whacks petrols in Oz race
ELMOFO rakes in two wins in sanctioned race
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
Astronomers scramble for obs on new comet
Amateur gets fifth confirmed discovery
Boffins build CYBORG-MOTHRA but not for evil: For search & rescue
This tiny bio-bot will chew through your clothes then save your life
Vulture 2 takes a battering in 100km/h test run
Still in one piece, but we're going to need MORE POWER
What does a flashmob of 1,024 robots look like? Just like this
Sorry, Harvard, did you say kilobots or KILLER BOTS?
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
BYOD's dark side: Data protection
An endpoint data protection solution that adds value to the user and the organization so it can protect itself from data loss as well as leverage corporate data.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?