Feeds

A postcard from Intel in Lisbon

Intel says 'parallel or perish'

Boost IT visibility and business value

photo of James Reinders, Intel Evangelist

James Reinders says that, soon,

a programmer who doesn't

"think parallel" won't

be a programmer.

Here are Reinders' rules for multiprogramming, in my words, and as I see them:

  1. Think parallel first. Don't even contemplate bolting on parallel processing capabilities afterwards.
  2. Code to express the parallel nature of the problem. Don't write thread management code – this is the equivalent of writing in C# or Java instead of Assembler.
  3. Don't tie threads to particular processors. You don't want to write programs that only run properly on a particular number of cores.
  4. Plan to scale through increased workload. Amdahl's Law often limits the performance gain you can get from parallel processing applied to a fixed-size workload (there is usually some significant serial part of the process which can't easily be parallelised); but Gustafson observed that if you increase the workload, the serial part of the process often remains fixed and parallel processing then lets you get through the much bigger workload with similar performance.
  5. Only create programs which can arbitrarily add tasks to the workload, so if more processors become available, the workload can take advantage of them
  6. Only write programs that can run serially, mainly because (assuming that all new PCs will be multicore) they'll then be easier to debug. However, for the time being your programs will still be expected to run OK on legacy single processor machines - and remember that a program optimised for multiprocessors will usually run more slowly on a uniprocessor, so be aware of this and don't rush headlong into coding for multicore architectures.

And some of the tools which Intel thinks will help you follow these rules are:

  • The OpenMP standard, which bolts efficient parallelising onto C++ and Fortran compilers using compiler hints. This is what Sutter calls "industrial strength duct tape", but it works.
  • Threaded Building Blocks – C++ algorithms for scalable threading (Reinders seems very confident in this tool).
  • Thread Profiler - which highlights potential performance bottlenecks.
  • Thread Checker - which detects latent race conditions and potential deadlocks.

But now a note of caution. Parallel processing has always been a holy grail of computing (although Intel came to it late, perhaps). Many of the issues talked about in this conference I've met before – on multiprocessor mainframes (the most efficient way to achieve parallel processing in practice may be the mainframe job scheduler).

I've told good programmers to think about the consequences of running on multiprocessors, only to be told that "the compiler will look after it" (in general, it can't). And I've seen the results of programmers forgetting that their code can run on several processors and, in production, things may sometimes run in the wrong order as a result. This seldom shows up in test as, even if several processors are available to the test system, the chances are that you don't process enough data to see the latent race conditions, which tend to appear when the system is overloaded.

I've had to deal with the consequences of programmers deciding that they can do locks better than IBM and coding them for themselves (the application I'm thinking of was very fast – for a while, until the consequences of never releasing locks became apparent).

This stuff seems to be hard, so we're going to need very good tools and more training. And probably, much better adherence to good development process.

Do I think that parallel processing of this sort is the way of the future? Yes, emphatically, if you run on Intel or similar models it's the only way (it seems to me) to scale computer processor power effectively. Although whether we need to scale computer processor power or whether lots of specialised small computers, another kind of parallel processing, will work better, might be another question.

Reinders tried to make the point that parallelism was intuitive. His example was the queue – it's really quite intuitive that if you have a long queue, you just need more people on the desks servicing it. Simple. But this can hide a lot of complexity – if you have more desks and shorter queues checking in at Heathrow, things go faster. But you don't expect to get past check-in and find several people are assigned to one seat.

This is a trivial example, but move back a bit and airlines have gone bust because their booking systems couldn't cope with the essentially parallel activity of selling seats in an aeroplane at travel agents across the country. Planes flying three quarters full with spare capacity to cover "collisions" for seats – or upgrading overbooked passengers for travel on the next flight - can get expensive.

Do I think that parallelism is intuitive? "Only up to a point, Lord Copper". The consensus among the speakers at the conference was that this would be a revolution in thinking comparable with the OO revolution or structured programming. And (rather like OO) it will probably only become routine once the "old guard" dies off and a new generation of graduates that knows no other way of thinking takes over. ®

The Essential Guide to IT Transformation

More from The Register

next story
NO MORE ALL CAPS and other pleasures of Visual Studio 14
Unpicking a packed preview that breaks down ASP.NET
KDE releases ice-cream coloured Plasma 5 just in time for summer
Melty but refreshing - popular rival to Mint's Cinnamon's still a work in progress
Leaked Windows Phone 8.1 Update specs tease details of Nokia's next mobes
New screen sizes, dual SIMs, voice over LTE, and more
Another day, another Firefox: Version 31 is upon us ALREADY
Web devs, Mozilla really wants you to like this one
Put down that Oracle database patch: It could cost $23,000 per CPU
On-by-default INMEMORY tech a boon for developers ... as long as they can afford it
Mozilla keeps its Beard, hopes anti-gay marriage troubles are now over
Plenty on new CEO's todo list – starting with Firefox's slipping grasp
Apple: We'll unleash OS X Yosemite beta on the MASSES on 24 July
Starting today, regular fanbois will be guinea pigs, it tells Reg
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.