Feeds

UK researchers reveal room-temperature graphene transistor

You electrons - one at a time, please

Secure remote control for conventional and virtual desktops

Boffins at Britain's University of Manchester have created a transistor out of an atom-thick sheet of carbon. The high-speed device is so small only one electron can pass through at once. Crucially, the transistor operates at room temperature making it potentially viable for future microprocessors.

Details of the breakthrough were announced in the science journal Nature this week. The team, led by Professor Andre Geim of the Manchester Centre for Mesoscience and Nanotechnology, built the transistor from graphene, an allotrope of carbon that essentially fits all its constituent carbon atoms into a single plane. Discovered only three years ago, graphene is highly conductive.

The transistor itself is of a type known as the single-electron transistor. The controlling gate electrode is capacitively coupled to an electrode called the island, which sits between the source and the drain. At a certain voltage the island forms what's known as a Coulomb blockade, preventing an electron in the source quantum mechanically tunneling through to the island and then through to the drain. Apply a positive voltage to the gate, and the electron is free to pass from source to island to drain.

The single-electron transistor design is not only inherently very small, but the tiny voltages required to switch it on and off make it very sensitive, to the extent that it's seen as a possible fast yet low-power successor to today's chip transistors.

The single-electron transistor isn't a new design, but past attempts to create one have used more standard semiconductor materials, all of which have needed cooling to near absolute zero to operate. The graphene single-electron transistor operates at room temperature.

There's still some way to go to create a working chip from graphene single-electron transistors. Etching the transistor isn't a certain process - most attempts produce transistors that are too large to allow just one electron to pass through, and the process makes structural changes to the graphene around the transistor that can scatter electrons, the effect of which is not yet fully understood.

However, the research may well show how chip designers may continue their work once they have exceeded the limits of silicon.

Choosing a cloud hosting partner with confidence

More from The Register

next story
4K-ing excellent TV is on its way ... in its own sweet time, natch
For decades Hollywood actually binned its 4K files. Doh!
Oi, Tim Cook. Apple Watch. I DARE you to tell me, IN PERSON, that it's secure
State attorney demands Apple CEO bows the knee to him
Apple's big bang: iPhone 6, ANOTHER iPhone 6 Plus and WATCH OUT
Let's >sigh< see what Cupertino has been up to for the past year
Phones 4u website DIES as wounded mobe retailer struggles to stay above water
Founder blames 'ruthless network partners' for implosion
Get your Indian Landfill Android One handsets - they're only SIXTY QUID
Cheap and deafening mobes for the subcontinental masses
Apple's SNEAKY plan: COPY ANDROID. Hello iPhone 6, Watch
Sizes, prices and all – but not for the wrist-o-puter
A SCORCHIO fatboy SSD: Samsung SSD850 PRO 3D V-NAND
4Gb/s speeds on a consumer drive, anyone?
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Security and trust: The backbone of doing business over the internet
Explores the current state of website security and the contributions Symantec is making to help organizations protect critical data and build trust with customers.