Feeds

Intel 45nm CPUs to use metal gates, high-k dielectric

One step ahead of the competition

Beginner's guide to SSL certificates

Intel's 45nm microprocessors will incorporate transistors constructed with metal gates and high-k dielectric materials, the chip maker revealed today. That said, it was tight-lipped about which materials will actually make up these components in its 45nm dual-core die, 'Penryn'.

Penryn's transistors use a metal in place of the polysilicon material that controls the flow of current through today's transistors. And where standard processor transistors separate the gate from the source and drain, and the silicon substrate all these elements are mounted on, Penryn's transistors will use a high-k oxide.

intel's 45nm metal-gate, high-k transistor

The upshot, Intel claimed, was a "significant performance increase and leakage reduction" - less power is required to switch the flow of electrons through the transistor on and off. Leakage - the flow of current outside the transistor - is reduced, Intel said, because the use of a high-k material means the oxide layer can be thicker than is currently the case, making it harder for electrons to leak through. The high-k material is derived from Hafnium, but Intel would say no more.

It said the new transistor construction will see source-drain leakage reduced fivefold and gate oxide leakage tenfold. Or Intel can opt to raise the drive current 20 per cent, boosting the transistor's switch speed, which essentially means faster processing. Those figures are relative to a standard transistor rather than the design implemented in Intel's 65nm transistors, which included a low-k gate oxide.

Intel also claimed the metal gate and high-k combo would yield around a 30 per cent reduction in the power needed to switch the transistor.

Intel has been working on high-k dielectrics since 2003 at the very least, though it's a technique arch-rival AMD has in the past poo-poo'd. It has put its faith in silicon-on-insulator (SOI) technology and a three-gate transistor design.

Security for virtualized datacentres

More from The Register

next story
It's Big, it's Blue... it's simply FABLESS! IBM's chip-free future
Or why the reversal of globalisation ain't gonna 'appen
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
CAGE MATCH: Microsoft, Dell open co-located bit barns in Oz
Whole new species of XaaS spawning in the antipodes
Microsoft and Dell’s cloud in a box: Instant Azure for the data centre
A less painful way to run Microsoft’s private cloud
AWS pulls desktop-as-a-service from the PC
Support for PCoIP protocol means zero clients can run cloudy desktops
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.