Feeds

Scientists store whole image on a single photon

Whoa...slow down there

Intelligent flash storage arrays

An entire image's worth of data has been encoded into a single photon, without information being lost, for the first time.

Credit: University of Rochester

The image "UR", for New York's University of Rochester, where the work was carried out, was also decoded (pictured above) after being stored briefly.

The team behind the development, pubished in Physical Review Letters, say it opens the door to optical buffering and eventual long-term light-based information storage. Optical buffering is also a way to beat a communications bottleneck: converting an optical signal to an electronic one.

Assistant professor of physics, and leader of the team that created the device, John Howell said: "It sort of sounds impossible, but instead of storing just ones and zeros, we're storing an entire image. It's analogous to the difference between snapping a picture with a single pixel and doing it with a camera - this is like a six megapixel camera."

The image was created simply by shining a single photon through a minute stencil. At that scale, quantum mechanics dictates that a single photon passes through all the holes in the stencil simultaneously, picking up the shadow - or the information - from each one.

The photon then passed into a four inch "cell" of caesium gas at 100°C, where it was slowed. The new approach to slowing light used by the researchers means that thousands of information-bearing photons could be stored in a single cell without data being lost.

Alan Willner, professor of electrical engineering at the University of Southern California and president of the IEEE Lasers and Optical Society said: "The parallel amount of information John has sent all at once in an image is enormous in comparison to what anyone else has done before. To do that and be able to maintain the integrity of the signal - it's a wonderful achievement."

The next stage for the team is to attempt to store a photon permanently - the breakthrough which could lead to true light storage of vast quantities of information. ®

Bootnote

Professor Howell had to do a little back-pedalling on the claims made in the Univerity's press information. See here at Scientific American.

Providing a secure and efficient Helpdesk

More from The Register

next story
SECRET U.S. 'SPACE WARPLANE' set to return from SPY MISSION
Robot minishuttle X-37B returns after almost 2 years in orbit
No sail: NASA spikes Sunjammer
'Solar sail' demonstrator project binned
LOHAN crash lands on CNN
Overflies Die Welt en route to lively US news vid
You can crunch it all you like, but the answer is NOT always in the data
Hear that, 'data journalists'? Our analytics prof holds forth
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
Carry On Cosmonaut: Willful Child is a poor taste Star Trek parody
Cringeworthy, crude and crass jokes abound in Steven Erikson’s sci-fi debut
Origins of SEXUAL INTERCOURSE fished out of SCOTTISH LAKE
Fossil find proves it first happened 385 million years ago
America's super-secret X-37B plane returns to Earth after nearly TWO YEARS aloft
674 days in space for US Air Force's mystery orbital vehicle
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Cloud and hybrid-cloud data protection for VMware
Learn how quick and easy it is to configure backups and perform restores for VMware environments.
Three 1TB solid state scorchers up for grabs
Big SSDs can be expensive but think big and think free because you could be the lucky winner of one of three 1TB Samsung SSD 840 EVO drives that we’re giving away worth over £300 apiece.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.