Feeds

Of IBM's Cell-Based Blade

Circuitous route to launch

Beginner's guide to SSL certificates

Comment IBM has announced its first computing solution based on the Cell Broadband Engine (Cell BE), namely the IBM BladeCenter QS20. This solution targets computationally intense workloads such as 3D animation rendering, compression, encryption, and seismic and medical imaging, to help companies create and operate highly visual, immersive, realtime applications.

Based on the Power Architecture, the Cell BE was originally developed by IBM, Sony, and Toshiba for use in gaming consoles. Its multi-core architecture and high-speed communications offer improved, realtime response by incorporating IBM's advanced multi-processing technologies—generally found only in the company's most sophisticated server offerings. IBM stated it believes that the QS20 will expand the use of Cell into industries such as medical imaging, aerospace, defense, digital animation, communications, and oil and gas. Some specific applications mentioned include comparison and mapping of 3D medical images, which are typically are taken over months or years; signal processing and radar enhancements for the aerospace industry; and improved seismic imaging for energy companies engaged in locating and drilling for oil.

The IBM BladeCenter QS20's incorporation of the Cell BE follows last year's collaboration with Mercury Computer Systems that sought to enable Mercury to build Cell BE-based solutions targeted at multiple industries. IBM indicated that it will also continue to work with the broader community through Blade.org, Power.org and open standards to bring additional Cell BE-based solutions to market. The IBM BladeCenter QS20, based on Cell BE, will be delivered through the IBM System Cluster 1350, which offers a variety of server, processor, and switching technology options. Pricing details were not announced.

It's interesting to watch the circuitous route that technology often takes. Capabilities that were once considered only in the context of the extreme high end of the server marketplace can now be found in some of the most common of consumer electronics. The enormous computation and graphically intense capability of the Cell BE is just one example of this.

Although games are fun and cool, especially if one needs an excuse to put off doing something more important, the highly computational nature of graphics and movement integration found in common sub-$200 gaming consoles represents an oft-underappreciated deployment of technical innovation. Beyond the thrill of 3D off-road dirt biking or intergalactic battles with the green men from Mars, the sheer power enabled by the computational engines in these consoles is amazing.

When considering more mundane, but ultimately far more lucrative applications, harnessing this expertise to create highly sophisticated realtime computing and imaging systems for industries as varied as medical imaging, seismology, and radar, among others, is a natural outgrowth of what are otherwise cool consumer electronics. This counters conventional wisdom that associates high performance with massive expenditure, but then again conventional wisdom, by definition, does not dictate the path of innovation either.

The Cell BE is yet another reminder of the value of investment and innovation in chip design. There are few companies remaining on the planet that take this course of action seriously, yet this is one of the places where a vendor can quite legitimately create competitive advantage and drive the creation of new markets, or at least new market opportunities. The scope of the Power architecture is considerable, when one stops to consider that devices from automotive control systems to game consoles, laptops to workstations, and all the way up to massive-scale super-computing solutions all come from this venerable processor architecture.

By incorporating Cell BE into the BladeCenter, IBM has created additional flexibility for those who typically seek scale-out solutions for their computing needs. The Cell BE and its Power architecture combined with the inherent simplicity of blade-based solutions offers a highly flexible, simplified, and consolidated computing platform for graphics/imaging intensive applications. To our way of thinking, this is just one more reflection of the value and importance of R&D and innovation.

Copyright © 2006, The Sageza Group

Beginner's guide to SSL certificates

More from The Register

next story
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
NASA launches new climate model at SC14
75 days of supercomputing later ...
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
You think the CLOUD's insecure? It's BETTER than UK.GOV's DATA CENTRES
We don't even know where some of them ARE – Maude
DEATH by COMMENTS: WordPress XSS vuln is BIGGEST for YEARS
Trio of XSS turns attackers into admins
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
BOFH: WHERE did this 'fax-enabled' printer UPGRADE come from?
Don't worry about that cable, it's part of the config
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
prev story

Whitepapers

Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
How to determine if cloud backup is right for your servers
Two key factors, technical feasibility and TCO economics, that backup and IT operations managers should consider when assessing cloud backup.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Internet Security Threat Report 2014
An overview and analysis of the year in global threat activity: identify, analyze, and provide commentary on emerging trends in the dynamic threat landscape.