Feeds

Of IBM's Cell-Based Blade

Circuitous route to launch

Securing Web Applications Made Simple and Scalable

Comment IBM has announced its first computing solution based on the Cell Broadband Engine (Cell BE), namely the IBM BladeCenter QS20. This solution targets computationally intense workloads such as 3D animation rendering, compression, encryption, and seismic and medical imaging, to help companies create and operate highly visual, immersive, realtime applications.

Based on the Power Architecture, the Cell BE was originally developed by IBM, Sony, and Toshiba for use in gaming consoles. Its multi-core architecture and high-speed communications offer improved, realtime response by incorporating IBM's advanced multi-processing technologies—generally found only in the company's most sophisticated server offerings. IBM stated it believes that the QS20 will expand the use of Cell into industries such as medical imaging, aerospace, defense, digital animation, communications, and oil and gas. Some specific applications mentioned include comparison and mapping of 3D medical images, which are typically are taken over months or years; signal processing and radar enhancements for the aerospace industry; and improved seismic imaging for energy companies engaged in locating and drilling for oil.

The IBM BladeCenter QS20's incorporation of the Cell BE follows last year's collaboration with Mercury Computer Systems that sought to enable Mercury to build Cell BE-based solutions targeted at multiple industries. IBM indicated that it will also continue to work with the broader community through Blade.org, Power.org and open standards to bring additional Cell BE-based solutions to market. The IBM BladeCenter QS20, based on Cell BE, will be delivered through the IBM System Cluster 1350, which offers a variety of server, processor, and switching technology options. Pricing details were not announced.

It's interesting to watch the circuitous route that technology often takes. Capabilities that were once considered only in the context of the extreme high end of the server marketplace can now be found in some of the most common of consumer electronics. The enormous computation and graphically intense capability of the Cell BE is just one example of this.

Although games are fun and cool, especially if one needs an excuse to put off doing something more important, the highly computational nature of graphics and movement integration found in common sub-$200 gaming consoles represents an oft-underappreciated deployment of technical innovation. Beyond the thrill of 3D off-road dirt biking or intergalactic battles with the green men from Mars, the sheer power enabled by the computational engines in these consoles is amazing.

When considering more mundane, but ultimately far more lucrative applications, harnessing this expertise to create highly sophisticated realtime computing and imaging systems for industries as varied as medical imaging, seismology, and radar, among others, is a natural outgrowth of what are otherwise cool consumer electronics. This counters conventional wisdom that associates high performance with massive expenditure, but then again conventional wisdom, by definition, does not dictate the path of innovation either.

The Cell BE is yet another reminder of the value of investment and innovation in chip design. There are few companies remaining on the planet that take this course of action seriously, yet this is one of the places where a vendor can quite legitimately create competitive advantage and drive the creation of new markets, or at least new market opportunities. The scope of the Power architecture is considerable, when one stops to consider that devices from automotive control systems to game consoles, laptops to workstations, and all the way up to massive-scale super-computing solutions all come from this venerable processor architecture.

By incorporating Cell BE into the BladeCenter, IBM has created additional flexibility for those who typically seek scale-out solutions for their computing needs. The Cell BE and its Power architecture combined with the inherent simplicity of blade-based solutions offers a highly flexible, simplified, and consolidated computing platform for graphics/imaging intensive applications. To our way of thinking, this is just one more reflection of the value and importance of R&D and innovation.

Copyright © 2006, The Sageza Group

The Essential Guide to IT Transformation

More from The Register

next story
Manic malware Mayhem spreads through Linux, FreeBSD web servers
And how Google could cripple infection rate in a second
EU's top data cops to meet Google, Microsoft et al over 'right to be forgotten'
Plan to hammer out 'coherent' guidelines. Good luck chaps!
US judge: YES, cops or feds so can slurp an ENTIRE Gmail account
Crooks don't have folders labelled 'drug records', opines NY beak
FLAPE – the next BIG THING in storage
Find cold data with flash, transmit it from tape
Seagate chances ARM with NAS boxes for the SOHO crowd
There's an Atom-powered offering, too
Gartner: To the right, to the right – biz sync firms who've won in a box to the right...
Magic quadrant: Top marks for, er, completeness of vision, EMC
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.
Mobile application security vulnerability report
The alarming realities regarding the sheer number of applications vulnerable to attack, and the most common and easily addressable vulnerability errors.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.