Feeds

Floating point numbers - what else can be done?

Avoiding errors

  • alert
  • submit to reddit

The Power of One eBook: Top reasons to choose HP BladeSystem

Column In a recent article here in The Register we saw some of the problems that result when floating point numbers are misused or chosen inappropriately.

Many people wrote in to say they had seen first hand some of the voodoo techniques we decried, so clearly we're in the midst of a numerical calculation crisis and, if we don't do something, there's going to be satellites falling from the skies around us - in itself undesirable, but so much more so when the satellite in question is the one the TV channels depend on.

In this article we're going to look at other ways of handling real numbers, including some upcoming extensions to the C and C++ languages that could well see floats become much less used.

To recap briefly, last time we looked at the approximation error in floating point numbers that results because floats and doubles represent real numbers as a fraction over 2n. As we humans have 10 fingers, and we reserve the right to lay the foundations of our number system on such anatomical considerations, the values we deal with in software will often be some fraction over 10n, for example .37 is 37 over 102. Because there is no way to express this number in a base-2 floating point format, there was a small approximation error and we saw that this small approximation error turned into a big error when we tried to round and convert back to a base-10 real number.

This time round we're going to see what the methods are for avoiding this type of error. The comments made about the first article suggested many approaches, so we're going to weigh up the pros and cons of each. The main contenders are fixed point numbers, rational numbers, and base-10 floating point numbers.

The idea behind scaled integers is to fix a precision at the outset and use it consistently for all the operations involving a particular type of value. Take working with dollars and cents as an example. Instead of using a floating point to represent the value '$1.37' we would use an integral number to hold the value '137' and remember that the value has an implicit a scaling factor of 10-2.

The advantage of this approach is its simplicity; we can use native data types and the integral operations built into our hardware so the storage is efficient and the calculations are fast.

However, the problem with this approach is its inflexibility. The least significant place is chosen early in a project and it's difficult to change afterwards. If calculations result in numbers more precise than the representation then the extra precision is lost by truncation. Such errors accumulate and while steps can be taken to reduce them they are inhibited by encapsulation across function and class boundaries. Because flexibility and extensibility are important in software architecture, this is probably a sufficiently severe shortcoming to render this attractively simple solution unusable in many cases.

HP ProLiant Gen8: Integrated lifecycle automation

Next page: Rational numbers

More from The Register

next story
Whoah! How many Google Play apps want to read your texts?
Google's app permissions far too lax – security firm survey
Chrome browser has been DRAINING PC batteries for YEARS
Google is only now fixing ancient, energy-sapping bug
Do YOU work at Microsoft? Um. Are you SURE about that?
Nokia and marketing types first to get the bullet, says report
Microsoft takes on Chromebook with low-cost Windows laptops
Redmond's chief salesman: We're taking 'hard' decisions
EU dons gloves, pokes Google's deals with Android mobe makers
El Reg cops a squint at investigatory letters
Big Blue Apple: IBM to sell iPads, iPhones to enterprises
iOS/2 gear loaded with apps for big biz ... uh oh BlackBerry
OpenWRT gets native IPv6 slurping in major refresh
Also faster init and a new packages system
prev story

Whitepapers

Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Application security programs and practises
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.