Feeds

Floating point numbers - what else can be done?

Avoiding errors

  • alert
  • submit to reddit

Internet Security Threat Report 2014

Column In a recent article here in The Register we saw some of the problems that result when floating point numbers are misused or chosen inappropriately.

Many people wrote in to say they had seen first hand some of the voodoo techniques we decried, so clearly we're in the midst of a numerical calculation crisis and, if we don't do something, there's going to be satellites falling from the skies around us - in itself undesirable, but so much more so when the satellite in question is the one the TV channels depend on.

In this article we're going to look at other ways of handling real numbers, including some upcoming extensions to the C and C++ languages that could well see floats become much less used.

To recap briefly, last time we looked at the approximation error in floating point numbers that results because floats and doubles represent real numbers as a fraction over 2n. As we humans have 10 fingers, and we reserve the right to lay the foundations of our number system on such anatomical considerations, the values we deal with in software will often be some fraction over 10n, for example .37 is 37 over 102. Because there is no way to express this number in a base-2 floating point format, there was a small approximation error and we saw that this small approximation error turned into a big error when we tried to round and convert back to a base-10 real number.

This time round we're going to see what the methods are for avoiding this type of error. The comments made about the first article suggested many approaches, so we're going to weigh up the pros and cons of each. The main contenders are fixed point numbers, rational numbers, and base-10 floating point numbers.

The idea behind scaled integers is to fix a precision at the outset and use it consistently for all the operations involving a particular type of value. Take working with dollars and cents as an example. Instead of using a floating point to represent the value '$1.37' we would use an integral number to hold the value '137' and remember that the value has an implicit a scaling factor of 10-2.

The advantage of this approach is its simplicity; we can use native data types and the integral operations built into our hardware so the storage is efficient and the calculations are fast.

However, the problem with this approach is its inflexibility. The least significant place is chosen early in a project and it's difficult to change afterwards. If calculations result in numbers more precise than the representation then the extra precision is lost by truncation. Such errors accumulate and while steps can be taken to reduce them they are inhibited by encapsulation across function and class boundaries. Because flexibility and extensibility are important in software architecture, this is probably a sufficiently severe shortcoming to render this attractively simple solution unusable in many cases.

Security for virtualized datacentres

Next page: Rational numbers

More from The Register

next story
Microsoft WINDOWS 10: Seven ATE Nine. Or Eight did really
Windows NEIN skipped, tech preview due out on Wednesday
Business is back, baby! Hasta la VISTA, Win 8... Oh, yeah, Windows 9
Forget touchscreen millennials, Microsoft goes for mouse crowd
Apple: SO sorry for the iOS 8.0.1 UPDATE BUNGLE HORROR
Apple kills 'upgrade'. Hey, Microsoft. You sure you want to be like these guys?
ARM gives Internet of Things a piece of its mind – the Cortex-M7
32-bit core packs some DSP for VIP IoT CPU LOL
Microsoft on the Threshold of a new name for Windows next week
Rebranded OS reportedly set to be flung open by Redmond
Lotus Notes inventor Ozzie invents app to talk to people on your phone
Imagine that. Startup floats with voice collab app for Win iPhone
'Google is NOT the gatekeeper to the web, as some claim'
Plus: 'Pretty sure iOS 8.0.2 will just turn the iPhone into a fax machine'
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.