Feeds

Pre-AMD, ATI preps novel server charge

GPGPU for U and me

Top three mobile application threats

"These are streaming chips with a whole bunch of floating point units," Houston said. "You have to restructure code sometimes to get the best use out of these things. It's not for the faint of heart.

"In the high performance market, we've been talking about symmetric multi-processor servers with maybe four or eight or 16 threads. On an ATI chip, you're talking about 48 threads of simultaneous execution."*

ATI has only recently allowed developers to tap into its CTM (close to the metal) interface, which lets software interact directly with the underlying hardware.

Presumably, ATI will announce an even more open stance at its event next week.

As stated, the company declined to give us specific details on what it will reveal at the event. In late August, however, some savvy types discovered mention of ATI's FireStream 2U product by examining the server output log from an ATI Linux driver. Then, earlier this month, another chap discovered a living, breathing 1GB ATI FireStream card.

"The card is indeed based on R580 with a board layout nearly identical to the FireGL 7350 including the 1GB of ram," he wrote. "The box I saw contained only this card and a driver cd which had been burnt and was labeled as being a beta. Also, I found the label on the CD interesting: 'FireSTREAM Enterprise Stream Processor.'"

An ATI spokesman confirmed the existence of the FireStream product, but said its name may change due to the pending AMD merger and associated branding funk.

Nvidia did not immediately return our calls seeking comment for this story.

In an ideal world, the AMD/ATI tie-up will make life even easier on the GPGPU crowd.

"If I had my dream setup, it would include a much tighter interconnection between the graphics chip and central processor," Houston said. "What would be really interesting would be to have a cache coherent interface between the graphics processor and main processor."

AMD - via its Hypertransport technology - could potentially deliver just such technology by plugging GPUs directly into Opteron-based motherboards. This would let mainstream server makers such as Sun, IBM and HP follow the lead of a GraphStream and make graphics supercomputers.

Houston, and others, are also hoping that future GPGPU gear will allow for double precision floating-point operations as well, opening up the processor technology to a wider array of applications.

At the moment, ATI seems to be in an experimental phase with the GPGPU idea. Similarly, Nvidia hasn't rushed at the chance to talk up what it plans to offer.

The success of the technology will depend on the progression of software written for the GPUs and the sophistication of the GPGPU tools. In addition, the GPUs will need to stack up well against other options such as the Cell chip and FPGAs.

You can, however, imagine that with the raw power of GPUs and their volume status, customers should expect to see $2,000-ish boards make their way into workstations soon, followed by cheaper boards slotting into servers.

Without question, enterprise customers and labs are pleased to see GPGPUs moving out of the concept and testing phase and toward productville. A merged AMD/ATI might be in the best possible position to capitalize on these customers' interest. Hopefully, we'll know a lot more about ATI's ambitions next week. ®

*Bootnote

Houston was kind enough to add some technical detail to the differences between stream processing and multi-threaded processing for the curious.

In stream processing, you will run the same program on lots of elements simultaneously. Stream processing is a subtype of data parallel processing. The main goal of stream processing is to stage data so that it can be moved (streamed) through the memory system at high efficiency. All processing elements will run the exact same program, but on different data (parts of the stream). You cover memory latency with large amount of computation on each element ("arithmetic intensity"). In a stream model, all execution contexts (processors) run independent, so there is no locking or communication. Stream programming works well for large amounts of parallelism, but is limited in what applications it can run well. Often you have to convert an algorithm into a streaming formulation.

For multi-threading, each core can, and often do, run different programs. For example, one thread might be doing audio, while another does the AI for the bots in a game. Memory performance is generally gained by tuning your apps to make good use of the processor caches. General thread programming styles work well for a small number of threads, like 10s of threads. The user explicitly manages the processing but there is a large burden on the programmer to handle locking and communication control. Data-parallel and streaming models can be used well on multi-core processors as well, generally by carefully moving data through the cache hierarchy.

Combat fraud and increase customer satisfaction

More from The Register

next story
Samsung Galaxy S5 fingerprint scanner hacked in just 4 DAYS
Sammy's newbie cooked slower than iPhone, also costs more to build
Leaked pics show EMBIGGENED iPhone 6 screen
Fat-fingered fanbois rejoice over Chinternet snaps
Microsoft lobs pre-release Windows Phone 8.1 at devs who dare
App makers can load it before anyone else, but if they do they're stuck with it
Report: Apple seeking to raise iPhone 6 price by a HUNDRED BUCKS
'Well, that 5c experiment didn't go so well – let's try the other direction'
Feast your PUNY eyes on highest resolution phone display EVER
Too much pixel dust for your strained eyeballs to handle
US mobile firms cave on kill switch, agree to install anti-theft code
Slow and kludgy rollout will protect corporate profits
Rounded corners? Pah! Amazon's '3D phone has eye-tracking tech'
Now THAT'S what we call a proper new feature
Oh no, Joe: WinPhone users already griping over 8.1 mega-update
Hang on. Which bit of Developer Preview don't you understand?
Zucker punched: Google gobbles Facebook-wooed Titan Aerospace
Up, up and away in my beautiful balloon flying broadband-bot
Sony battery recall as VAIO goes out with a bang, not a whimper
The perils of having Panasonic as a partner
prev story

Whitepapers

Designing a defence for mobile apps
In this whitepaper learn the various considerations for defending mobile applications; from the mobile application architecture itself to the myriad testing technologies needed to properly assess mobile applications risk.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.