Feeds

Japan's AKARI 'scopes out stellar evolution

Infrared sky survey

Intelligent flash storage arrays

The Japanese infrared space telescope AKARI has sent back a raft of stunning new images of stellar evolution, from the earliest stages of star formation to the final death throes of stars in our own galaxy.

The observatory was launched in February this year and is about halfway through building its first infrared sky map.

The image shown is of the reflection nebula IC 1396, otherwise known as the Elephant Trunk Nebula, a star formation region within the Milky Way, about 3,000 light years from our solar system.

Glenn White, professor of Astronomy at the Open University and The CCLRC Rutherford Appleton Laboratory, said: "This image is extremely impressive - the infrared radiation has penetrated through the obscuring dust clouds between the Earth and the nebula allowing us to measure the whole star formation history in the region. Observing star forming regions over large areas lets us study the physics of stars that are born and examine how earlier generations of stars can feedback to and trigger the next burst of star birth."

Very massive stars - around 10 times the size of our sun - are being born in the region. Young stars have cleared the central part of the nebula of its dust, sweeping it out to the periphery. A single, very massive star in the middle has also ionised much of the gas in the nebula.

A new generation of stars is forming in the compressed gas and dust, the researchers say.

As well as taking these images of a stellar nursery, the observatory's Far Infrared Surveyor has captured a red giant in the final stages of its evolution.

Located around 500 light years from Earth, the red giant U Hydrae is surrounded by a cloud of dust, making observation in the visible spectrum very tricky.

In infrared, this cloud can be more easily studied. The data from AKARI shows that the dust forms a shell around the star at a distance of a third of a light year, implying that the matter was ejected by the star approximately 10,000 years ago.

"Observations at infrared wavelengths provide a unique view of the final stages of the evolution of stars – in particular as they eject shells of dusty material which go on to seed future generations of star formation in the galaxy," said Michael Rowan-Robinson, professor of Astronomy at Imperial College, London.

"This ejected material spreads throughout the star forming clouds and may eventually be assimilated into a new generation of stars, enriching them with heavy elements. Observations like this help us understand what galaxies look like when seen from large distances.

The information will help astronomers understand the relation between mass and light in our own galaxy. This in turn is useful for studying and characterising more distant galaxies, which helps scientists learn more about how the universe evolved.

More pictures available here. ®

Providing a secure and efficient Helpdesk

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
Relive the death of Earth over and over again in Extinction Game
Apocalypse now, and tomorrow, and the next day, and the day after that ...
prev story

Whitepapers

A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.