Feeds

Up with cohesion, down with coupling

We all love cohesion and hate coupling, don't we?

Top 5 reasons to deploy VMware with Tegile

The standard advice on cohesion and coupling is that a design should strive to maximise cohesion and minimise coupling. This is a fine mantra, but, as is so often the case, without a good understanding of what is really intended, it becomes either misguidance or perceived as academic and irrelevant.

A simple characterisation is that coupling is the degree of interconnectedness of parts in a system and cohesion is the degree of intraconnectedness of those parts.

Getting cohesive you want components — in the general sense of the word rather than the more specialised component-based development sense of the word — to be focused and crisply defined rather than diluted with multiple unrelated responsibilities.

For example, the root of an inheritance hierarchy should normally present an interface and represent a responsibility that all subclasses in the hierarchy can fulfil meaningfully. You should try to avoid having optional features in the root interface of the hierarchy that are only relevant to some subclasses but not others: this makes both using and writing classes in the hierarchy awkward.

For hierarchy users, they cannot confidently program to an interface without either feature testing or receiving some kind of "feature not supported" error.

For class implementers, if a superclass or base interface offers features that don't make sense for a particular subclass, either they have to make up some kind of fictional behaviour that sort of makes sense or they have to raise a "feature not supported" error. Either way, it's hard working in and around such hierarchies.

As an aside, you may already recognise this particular example as the principle of substitution (the Liskov Substitution Principle, or LSP, to be precise) for class hierarchies. It is commonly taught in its somewhat abridged sound-bite form: only use inheritance for "is-a" relationships.

It is interesting to note that rather than being a principle separate from maximise cohesion, LSP arises naturally from maximising cohesion, so it can be considered a specific application of maximise cohesion in the context of type hierarchies.

Anyway, what about coupling? You want components to be loosely coupled rather than tightly coupled. If they are tightly coupled, the internal structure of the resulting code base is intertwined, subtle, difficult to comprehend, hard to change, and many other costly and awkward etceteras.

For example, having one part of the code base depend on an incidental data representation decision in another part of the code base is a pain when you need to change the representation, even if the usage is stable. Hence, the common recommendation to keep data representation decisions private is a guideline that reduces coupling.

However, don't get too carried away: low coupling does not mean no coupling. The goal is reduction rather than elimination of coupling: a system with no coupling is, by definition, not a system.

There are many forms of coupling, and some are explicit whereas others are implicit. For example, the inheritance relationship expressed with extends in Java or the file dependency expressed using #include in C or C++ are examples of dependencies that are directly declared and visible in code.

But don't assume that the only form of coupling is the explicit stuff. Many years ago I encountered a team that did not appreciate this implicit aspect of coupling, and drew completely the wrong conclusions about what to do with a C++ header file that contained an enum with all the error codes for a whole program. Bundling all the error codes for a whole system in one place smacks of coincidental cohesion and couples unrelated parts of a system to a relatively unstable component.

There are many different and reasonable ways to cut this dependency knot, should you chose to do so. Hopefully you'll agree that replacing the enum with an int and replacing named constants with magic numbers to represent different errors is not one of them. The reasoning was that because they had eliminated the type and all those pesky named constants, there was no longer any need to have a header file, which meant, by definition, that different parts of the program were no longer coupled to a common header. Hey presto! Or not.

Instead, they had a program littered with magic numbers that were implicitly coupled to one another by ad hoc usage and convention and they had thrown away the ability of the compiler to perform any checking: "OK everyone, team meeting, listen in. Please try to be consistent in your use of the number three to indicate file writing errors (it was two last week, but two is now for file reading errors), 17 to indicate dropped connections...".

Beginner's guide to SSL certificates

More from The Register

next story
Euro Parliament VOTES to BREAK UP GOOGLE. Er, OK then
It CANNA do it, captain.They DON'T have the POWER!
Download alert: Nearly ALL top 100 Android, iOS paid apps hacked
Attack of the Clones? Yeah, but much, much scarier – report
NSA SOURCE CODE LEAK: Information slurp tools to appear online
Now you can run your own intelligence agency
Post-Microsoft, post-PC programming: The portable REVOLUTION
Code jockeys: count up and grab your fabulous tablets
Twitter App Graph exposes smartphone spyware feature
You don't want everyone to compile app lists from your fondleware? BAD LUCK
Microsoft adds video offering to Office 365. Oh NOES, you'll need Adobe Flash
Lovely presentations... but not on your Flash-hating mobe
prev story

Whitepapers

Designing and building an open ITOA architecture
Learn about a new IT data taxonomy defined by the four data sources of IT visibility: wire, machine, agent, and synthetic data sets.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
5 critical considerations for enterprise cloud backup
Key considerations when evaluating cloud backup solutions to ensure adequate protection security and availability of enterprise data.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Driving business with continuous operational intelligence
Introducing an innovative approach offered by ExtraHop for producing continuous operational intelligence.