Feeds

Geeks pray $100,000 box will solve software crisis

The 1,000-chip 'MIT Fix'

Secure remote control for conventional and virtual desktops

Hot Chips There's a weird 1,000-processor computer floating about that's being hailed as the "MIT Fix."

Over the years, MIT's computer science department has built up a reputation for making all too bold performance claims around their systems and software research. Rival institutions and companies, hampered by time and financial constraints, can't always craft a cutting edge replica of MIT's gear to certify just how accurate the school's claims are.

On a much larger level, a similar problem is haunting the entire computing industry.

We're heading at speed from two, four and eight-core processors to having tens and even hundreds of cores per chip. Such products will require new software programming models and new system designs. Few researchers, however, can afford to play around with a 1,000-core system – that is if such a system was readily available already.

In order to test out cutting edge code and hardware, a group of computing aficionados – both academics and free range researchers - has teamed up to create the RAMP (Research Accelerator for Multiple Processors) system. This "MIT Fix" isn't a supercomputer, as one might be inclined to think. Rather it's a relatively cheap 1,000 node machine made out of FPGAs (Field Programmable Gate Arrays) that can serve as a practical test system for futuristic system designs.

"Little is known on how to build, program, or manage systems of 64 to 1024 processors, and the computer architecture community lacks the basic infrastructure tools required to carry out this research," the RAMP group writes on its web site. "Fortunately, Moore's law has not only enabled these dense multi-core chips, it has also enabled extremely dense FPGAs.

"Today, one to two dozen cores can be programmed into a single FPGA. With multiple FPGAs on a board and multiple boards in a system, large complex architectures can be explored."

The RAMP project has garnered special attention due to one of its leads - computing legend David Patterson. The Berkeley researcher pushed one of the first RISC designs, which turned into the SPARC processor architecture used by Sun Microsystems and Fujitsu. Later, he led the RAID storage project and then teamed with then Stanford professor – and now Prez – John Hennessy to write a seminal computer science text. Patterson, speaking yesterday at the Hot Chips conference here, sees a growing disconnect coming between hardware and software designers. The move to multi-core chips, which is already well underway, will demand more complex, multi-threaded applications.

"What's wrong with the multi-core change is that no one is ready for it," he said. "The pieces of the software stack are not ready for thousands of CPUs per chip."

Software designers tend to be reluctant to begin writing complex code before plenty of hardware arrives to handle their applications. Such a strategy won't work out well in the context of the multi-core shift, according to Patterson. Those used to seeing performance increases in their code via GHz hikes will suffer from under-performing code that struggles to make its way across numerous, low-power chips. And we're talking about a problem that affects algorithms, programming languages, compilers, operating systems and libraries.

So far, researchers willing to tackle these software problems have suffered from limited, practical hardware choices. The lucky few – very few – can shell out $50m for Unix-based SMP systems from the likes of SGI or Sun. For about $3m, an organization can build a test cluster using x86 servers and Linux, but such systems are often hard to manage and eat up space and power. Meanwhile, desktop simulators are cheap but not really capable of returning accurate results when you're talking about mimicking a 1,000-core machine.

Patterson, and researchers from Intel, Stanford, the University of Texas, Carnegie Mellon, the University of Washington, Berkeley and even MIT, think the RAMP system offers a nice middle ground.

A 1,000-chip replica will cost between $100,000 and $200,000, provide better performance than a desktop and replicate the conditions of a true multi-core machine well. In addition, the researchers can reprogram the systems to handle different CPU architectures such as Power and UltraSPARC and different operating systems such as Linux and Solaris. (So far, the x86 crowd has declined to participate in the project despite the presence of Intel engineer Shih-Lien Lu.)

Critics charge that at 200MHz the FPGAs will run too slow to give accurate results, especially with speedier memory components surrounding them. Patterson, however, stressed that the RAMP crew will focus on "clock cycle accounting." They will tweak different components such as bandwidth, cache size and storage and then give researchers or companies an idea of how many clock cycles it takes to complete a given operation. This should provide customers with a picture of "how their application will run on a computer of the future."

"It has to provide faithful and credible results," Patterson said.

By next month, the RAMP group hopes to settle on its first processor architecture of attack and looks to be leaning toward Power and Linux. Then, over the next year, the team wants to get some basics such as accurate clock cycle accounting down and then more complex functions such as transactional memory all running on up to 256 processors.

Patterson hopes that large vendors and even start-ups will embrace the open RAMP work and get test systems out to universities and software designers.

Hopefully, someone will send MIT a system too.

Berkeley's Patterson gave rival MIT some playful ribbing during his Hot Chips speech, complaining that the school often produces hard to replicate results. A Sun engineer at the show backed up the joke, saying the company is hesitant to trust performance claims from MIT's computer science department. A RAMP box could make it easier to check MIT's performance claims. ®

Beginner's guide to SSL certificates

More from The Register

next story
NSA SOURCE CODE LEAK: Information slurp tools to appear online
Now you can run your own intelligence agency
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
NASA launches new climate model at SC14
75 days of supercomputing later ...
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
BOFH: WHERE did this 'fax-enabled' printer UPGRADE come from?
Don't worry about that cable, it's part of the config
Stop the IoT revolution! We need to figure out packet sizes first
Researchers test 802.15.4 and find we know nuh-think! about large scale sensor network ops
SanDisk vows: We'll have a 16TB SSD WHOPPER by 2016
Flash WORM has a serious use for archived photos and videos
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
prev story

Whitepapers

Seattle children’s accelerates Citrix login times by 500% with cross-tier insight
Seattle Children’s is a leading research hospital with a large and growing Citrix XenDesktop deployment. See how they used ExtraHop to accelerate launch times.
5 critical considerations for enterprise cloud backup
Key considerations when evaluating cloud backup solutions to ensure adequate protection security and availability of enterprise data.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.