Feeds

Red Giant fails to devour Brown Dwarf companion

Saving it for later

High performance access to file storage

Astronomers using the European Southern Observatory's Very Large telescope have identified a star system in which a brown dwarf has survived being engulfed by its companion star's Red Giant phase.

Now, both stars are planet sized, and orbit one another very closely, and very fast. The orbital period is around two hours. One is a white dwarf - a star roughly earth-sized, but around half as massive as our sun, and the other is a brown dwarf - a failed star approximately 55 times as massive as Jupiter.

But it wasn't always that way, according to Pierre Maxted, lead author of a paper in this week's Nature

"Such a system must have had a very troubled history", he said. "Its existence proves that the brown dwarf came out almost unaltered from an episode in which it was swallowed by a red giant."

Millions of years ago, the white dwarf was a star very much like our own sun, and was orbited by its then much more distant brown dwarf companion. As its supplies of hydrogen began to run out, it started to collapse. This created a little extra pressure at its core, giving it a little more energy to keep those fires burning by igniting the hydrogen that remained in its shell.

As the hydrogen in the star's shell burnt, so the shell expanded outwards and the star became a red giant and started burning helium, just for fun.

It got so large that it enveloped its companion star. Being inside a star instead of just orbiting one is a disturbing thing, and the brown dwarf was jostled into a new orbit, spiralling closer and closer to the centre of the red giant.

At some point, the Red Giant ran out of helium and collapsed in again. When the core collapsed, it released energy causing the star's envelope to blow off. And so the star shed its outer layers in a planetary nebula (nothing to do with planets), leaving its core intact, and visible to us as a white dwarf.

The brown dwarf is also intact, although orbiting the star much more closely. If it had originally been less than 20 Jupiter masses, it would have evaporated.

Eventually, the two stars will move still closer together, and their orbital period will reduce still further. In about 1.4bn years they will be so close that the white dwarf will begin siphoning material off the brown dwarf. ®

High performance access to file storage

More from The Register

next story
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
LOHAN's Punch and Judy show relaunches Thursday
Weather looking good for second pop at test flights
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
Red-faced LOHAN team 'fesses up in blown SPEARS fuse fiasco
Standing in the corner, big pointy 'D' hats
Curiosity finds not-very-Australian-shaped rock on Mars
File under 'messianic pastries' and move on, people
Top Secret US payload launched into space successfully
Clandestine NRO spacecraft sets off on its unknown mission
Get your MOON GEAR: Auction to feature Space Race memorabilia
Keepsakes from early NASA, Soviet programs up for bids
New FEMTO-MOON sighted BIRTHING from Saturn's RING
Icy 'Peggy' looks to be leaving the outer rings
prev story

Whitepapers

Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
HP ArcSight ESM solution helps Finansbank
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.