Feeds

Photonic crystals pave way for lab-onna-chip

Clever stuff

Choosing a cloud hosting partner with confidence

Researchers at Georgia Tech have made a breakthrough in optical technology by shrinking a key sensor component to less than a millimetre in all directions.

The work paves the way for integrating sophisticated bio-sensors onto so-called lab-on-a-chip devices that could be used for roadside drugs testing, on the spot environmental testing, running blood tests in remote areas, and so on.

The breakthrough has been to shrink a device called a wavelength demultiplier (WD) by radically redesigning photonic crystals. These are highly periodic structures etched in silicon that allow extremely fine control of light.

When space is an issue, as it can be in compact communications, signal processing, optical sensors, and multiple wavelengths of light are combined. To get the information back out, they need to be separated when they reach their destinations, the researchers explain. This is where the WD comes in: it sorts the various signals out at the end.

By redrawing the mask for the photonic crystal, the team has been able to combine three functions: superprisming, focusing, and filtering. The design also eliminates problems of wavelength interference, which means that although the crystal is tiny, it will work at very high resolutions - between 64 and 100 microns.

Ali Adibi, a professor in Georgia Tech's School of Electrical and Computer Engineering and the lead researcher on the project, says the design eliminates many of the problems associated with "combining delicate optical functions in such a small space".

"This project really demonstrates the importance of dispersion engineering in photonic crystals. It's all done by changing the geometry of some holes you etch in the silicon. It's very simple and it allows you to combine properties into one material that you never could before."

The new design should not be any more expensive or difficult to manufacture, Adibi said. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Canberra drone team dances a samba in Outback Challenge
CSIRO's 'missing bushwalker' found and watered
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.