Feeds

Planets could put the brakes on young stars

Lindsay Lohan, take note

Secure remote control for conventional and virtual desktops

The very early stages of planet formation could be responsible for putting the brakes on fast-spinning young stars, according to astronomers using the Spitzer infrared space telescope.

The researchers have found that slow spinning stars are five times more likely than their speedier cousins to be encircled by a disk of proto-planetary dust.

Dr Luisa Rebull of NASA's Spitzer Science Centre, lead author on the study, commented: "We knew that something must be keeping the stars' speed in check. Disks were the most logical answer, but we had to wait for Spitzer to see the disks."

Young stars spin around incredibly fast, some making a complete revolution in less than half a day. This is because of how they form: clouds of spinning gas collapse in on themselves, spinning faster and faster, just as an ice skater will when he pulls his arms in as he spins.

As it spins, excess dust and gas will flatten and form disks around the newly ignited star. The disk rotates much more slowly, and astronomers had suggested that the disk might interact with the star's magnetic field somehow and act as a brake.

We know something has to. Left to itself, a star spinning at a rate of a revolution every half day will not form planets. In addition, every single star that has been observed with planets so far, has been a relatively slow spinner, like our sun.

To test the idea that the disks do slow stars down, Rebull trained the Spitzer telescope on a region of the Orion Nebula, and surveyed 500 young stars.

She split the stars into fast spinners and slow spinners, and then used Spitzer to determine which were surrounded by disks. Slower stars turned out to be five times more likely to have disks than their faster colleagues.

Rebull concedes that this is not conclusive evidence for the exact mechanism of braking, but stresses that at least: "We can now say that disks play some kind of role in slowing down stars in at least one region."

She adds that other factors could be operating in tandem with the braking effect of a disk, and that different stars in different environments could behave differently.

The research is published in the 20 July issue of the Astrophysical Journal. ®

Internet Security Threat Report 2014

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
NASA launches new climate model at SC14
75 days of supercomputing later ...
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
prev story

Whitepapers

Designing and building an open ITOA architecture
Learn about a new IT data taxonomy defined by the four data sources of IT visibility: wire, machine, agent, and synthetic data sets.
10 threats to successful enterprise endpoint backup
10 threats to a successful backup including issues with BYOD, slow backups and ineffective security.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Managing SSL certificates with ease
The lack of operational efficiencies and compliance pitfalls associated with poor SSL certificate management, and how the right SSL certificate management tool can help.