Feeds

Planets could put the brakes on young stars

Lindsay Lohan, take note

Intelligent flash storage arrays

The very early stages of planet formation could be responsible for putting the brakes on fast-spinning young stars, according to astronomers using the Spitzer infrared space telescope.

The researchers have found that slow spinning stars are five times more likely than their speedier cousins to be encircled by a disk of proto-planetary dust.

Dr Luisa Rebull of NASA's Spitzer Science Centre, lead author on the study, commented: "We knew that something must be keeping the stars' speed in check. Disks were the most logical answer, but we had to wait for Spitzer to see the disks."

Young stars spin around incredibly fast, some making a complete revolution in less than half a day. This is because of how they form: clouds of spinning gas collapse in on themselves, spinning faster and faster, just as an ice skater will when he pulls his arms in as he spins.

As it spins, excess dust and gas will flatten and form disks around the newly ignited star. The disk rotates much more slowly, and astronomers had suggested that the disk might interact with the star's magnetic field somehow and act as a brake.

We know something has to. Left to itself, a star spinning at a rate of a revolution every half day will not form planets. In addition, every single star that has been observed with planets so far, has been a relatively slow spinner, like our sun.

To test the idea that the disks do slow stars down, Rebull trained the Spitzer telescope on a region of the Orion Nebula, and surveyed 500 young stars.

She split the stars into fast spinners and slow spinners, and then used Spitzer to determine which were surrounded by disks. Slower stars turned out to be five times more likely to have disks than their faster colleagues.

Rebull concedes that this is not conclusive evidence for the exact mechanism of braking, but stresses that at least: "We can now say that disks play some kind of role in slowing down stars in at least one region."

She adds that other factors could be operating in tandem with the braking effect of a disk, and that different stars in different environments could behave differently.

The research is published in the 20 July issue of the Astrophysical Journal. ®

Security for virtualized datacentres

More from The Register

next story
Boffins who stare at goats: I do believe they’re SHRINKING
Alpine chamois being squashed by global warming
What's that STINK? Rosetta probe shoves nose under comet's tail
Rotten eggs, horse dung and almonds – yuck
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
MARS NEEDS WOMEN, claims NASA pseudo 'naut: They eat less
'Some might find this idea offensive' boffin admits
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.