Feeds

Researchers look to predict software flaws

Vulnerability formula

Providing a secure and efficient Helpdesk

Want to know how many flaws will be in the next version of a software product? Using historical data, researchers at Colorado State University are attempting to build models that predict the number of flaws in a particular operating system or application.

In an analysis to be presented at a secure computing conference in September, three researchers used monthly flaw tallies for the two most popular web servers - The Apache Foundation's Apache web server and Microsoft's Internet Information Services (IIS) server - to test their models for predicting the number of vulnerabilities that will be found in a given code base.

The goal is not to help software developers to create defect-free software - which may be so unlikely as to be impossible - but to give them the tools to determine where they need to concentrate their efforts, said Yashwant Malaiya, professor of computer science at Colorado State University and one of the authors of the paper on the analysis.

"The possible reasons that vulnerabilities arise are much smaller than the reasons for the number of defects, so it should be possible to reduce the number of vulnerabilities," Malaiya said. "It would never be possible to reduce the issues to zero, but it should be possible to reduce it to a much smaller number."

The research could be another tool for developers in the fight to improve programmers' security savvy and reduce the number of flaws that open up consumers and companies to attack. While the number of vulnerabilities found in recent years leveled off, web applications boosted the number of flaws found in 2005.

Moreover, the advent of data-breach notification laws has forced companies, universities and government agencies to tell citizens when a security incident has put their information in peril. The resulting picture painted by numerous breach notifications has not been heartening.

The latest research focuses on fitting an S-shaped curve to monthly vulnerability data, positing that a limited installed based and little knowledge of new software limits the finding of vulnerabilities in a just-released application, while exhaustion of the low-hanging fruit makes finding vulnerabilities in older products more difficult.

The researchers found that the number of vulnerabilities found in Windows 95, Windows NT and Red Hat Linux 7.1 fit their model quite well, as does those found in the Apache and IIS web servers between 1995 and the present. The web server analysis, which will be discussed in the September paper, suggests that IIS has reached a saturation point, with a lower rate of vulnerabilities discovered than Apache. Moreover, that analysis found that the S-curve relationship holds for broad classes of vulnerabilities, such as input validation errors, race conditions, and design errors.

Some software developers believe that such research could allow product managers to make better decisions about when a software program is ready to be shipped and how many vulnerabilities will likely be found.

"There isn't an engineering manager that wouldn't love to know the number of vulnerabilities they should expect to have after pushing out a product," said Ben Chelf, chief technology officer for Coverity, a maker of source-code analysis tools that can be used to detect potential software flaws. "A VP of engineering can, on the release date, say, 'We expect to find 50 more security issues in this code'. That helps mitigate cost and risk."

Yet, the researchers' predictions have been hit or miss, even with a large margin of error of 25 per cent. A paper released in January 2006 predicted that the number of flaws found in Windows 98 would saturate between 45 and 75; at the time, data from the National Vulnerability Database showed that 66 vulnerabilities had been found, but that number has continued to increase to 91 as of July.

However, the researchers' prediction for Windows 2000 has apparently been accurate: The current number of vulnerabilities for the operating system is 305, just within the 294-to-490 range given in the computer scientists' paper.

Whether the models become more accurate may rely on getting better data on the number of software flaws discovered after development. The models used for prediction of future vulnerabilities assume that defect density - the number of software flaws per 1,000 lines of code - remains the same between software versions.

It's not an unreasonable assumption: Historically, the researchers found that a company's programming teams tend not to get better, making the same number of mistakes in one version of software as the next, said CSU's Malaiya.

However, such observations use data that predates the increasing use of static code analysis software and initiatives among developers, such as Microsoft, to improve the security of their products.

Secure remote control for conventional and virtual desktops

More from The Register

next story
Microsoft WINDOWS 10: Seven ATE Nine. Or Eight did really
Windows NEIN skipped, tech preview due out on Wednesday
Business is back, baby! Hasta la VISTA, Win 8... Oh, yeah, Windows 9
Forget touchscreen millennials, Microsoft goes for mouse crowd
Apple: SO sorry for the iOS 8.0.1 UPDATE BUNGLE HORROR
Apple kills 'upgrade'. Hey, Microsoft. You sure you want to be like these guys?
ARM gives Internet of Things a piece of its mind – the Cortex-M7
32-bit core packs some DSP for VIP IoT CPU LOL
Microsoft on the Threshold of a new name for Windows next week
Rebranded OS reportedly set to be flung open by Redmond
Lotus Notes inventor Ozzie invents app to talk to people on your phone
Imagine that. Startup floats with voice collab app for Win iPhone
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.