Feeds

British mum starts baking 'cancer-free' baby

Take the good. Throw out the bad

5 things you didn’t know about cloud backup

The UK's first made-to-order baby has sprouted in London, according to a report in The Times.

With the aid of genetics specialists, a woman has been able to make sure that her baby does not inherit a gene that might trigger a form a eye cancer. The lass - who has requested anonymity - and her husband are the first to tap a change in the laws around embryo screening. Previous rules dictated that mothers-to-be could only screen for genes guaranteed to lead to disease. In the case of the eye cancer, close to 90 per cent of the people with the gene actually get cancer, the paper reported.

"Although they did not have fertility problems, the woman and her partner created embryos by IVF," The Times said. "This allowed doctors to remove a cell and test it for the cancer gene, so only unaffected embryos were transferred to her womb."

The mother was treated at University College Hospital in London.

This area of genetic experimentation is not without controversy.

Plenty of people contend that it's wrong to filter out "tainted" embryos that may never develop the diseases later in life. In addition, doctors can now treat a number of the diseases being screened, and many of the babies would lead wonderful, fruitful lives before succumbing to illness.

On the other hand, you can, er, use the screening to secure a better chance of getting a baby without cancer.

You can expect the ethical questions around genetic engineering to increase in the coming years.

Researchers are currently on a Moore's Law type of path with regard to decoding the human genome. In 1989, for example, it cost close to $10 to read a single letter of genetic code. In 2005, researchers were able to churn out a letter of genetic code for just a tenth of a cent.

Similarly, scientists once doubted whether they'd be able to deliver an entire humane genome in their lifetimes. Now, centers such as the Joint Genome Institute in Walnut Creek, California - near Silicon Valley - produce the equivalent of a humane genome per month.

At present, it would cost between $5m and $10m to have a lab produce a a version of your, unique genetic code. Increased automation in the decoding process and lower material costs should reduce that figure in the coming years.

You can read more in The Times here. ®

Boost IT visibility and business value

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
Cutting cancer rates: Data, models and a happy ending?
How surgery might be making cancer prognoses worse
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Brit balloon bod Bodnar overflies North Pole
B-64 amateur ultralight payload approaching second circumnavigation
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Scale data protection with your virtual environment
To scale at the rate of virtualization growth, data protection solutions need to adopt new capabilities and simplify current features.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?