Feeds

Time up for atomic clocks

Every second counts

Intelligent flash storage arrays

Scientists are plotting a new era of hyper-exact timekeeping, spelling the end of the atomic clock in its current form. Very accurate clocks are vital in telecommunications, GPS, and other modern technological applications.

Traditional Caesium-based atomic clocks have been around since the mid-50s. They work by detecting microwave emissions from the Caesium atom, which occur at a very steady rate. Since 1967 that rate has been the fundamental frequency on which the international definition of a second is based. Prior to that, seconds had been defined in terms of the Earth's rotation, which is relatively variable.

The new clocks will work using optical rather than microwave frequencies, and ions rather than atoms. In timekeeping, the higher the frequency, the more stable the time signal. A team at the National Physics Laboratory (NPL) is using a light emitting Strontium ion trapped and cooled by lasers to push the accuracy of clocks.

The positively-charged ion sits in a spinning "saddle" of positive charge either side of it in the device, which is made of a 10cm tube of a glass composite, which is very stable to temperature fluctuations. Normal diode-type lasers hold it in place, cooling it to near-absolute zero and cause it to emit photons at an extraordinarily steady rate.

Helen Margolis from NPL says her team's Strontium version of an optical clock has the advantage over other ions like Mercury and Aluminium that the lasers it requires are common commercial types already cheaply produced.

Strontium clocks have now reached the point where their only point of reference for accuracy, the old-style Caesium clocks, can't compete. Margolis says the next step will be to have several Strontium clocks to compare against each other.

As well as having practical applications in navigation and telecoms, how well we can pin down the length of a second is a fundamental issue in physics. Indeed, basic units of length are defined by how far light travels in various time periods. ®

Providing a secure and efficient Helpdesk

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
NASA rover Curiosity drills HOLE in MARS 'GOLF COURSE'
Joins 'traffic light' and perfect stony sphere on the Red Planet
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
Relive the death of Earth over and over again in Extinction Game
Apocalypse now, and tomorrow, and the next day, and the day after that ...
prev story

Whitepapers

A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.