Feeds

Time up for atomic clocks

Every second counts

The next step in data security

Scientists are plotting a new era of hyper-exact timekeeping, spelling the end of the atomic clock in its current form. Very accurate clocks are vital in telecommunications, GPS, and other modern technological applications.

Traditional Caesium-based atomic clocks have been around since the mid-50s. They work by detecting microwave emissions from the Caesium atom, which occur at a very steady rate. Since 1967 that rate has been the fundamental frequency on which the international definition of a second is based. Prior to that, seconds had been defined in terms of the Earth's rotation, which is relatively variable.

The new clocks will work using optical rather than microwave frequencies, and ions rather than atoms. In timekeeping, the higher the frequency, the more stable the time signal. A team at the National Physics Laboratory (NPL) is using a light emitting Strontium ion trapped and cooled by lasers to push the accuracy of clocks.

The positively-charged ion sits in a spinning "saddle" of positive charge either side of it in the device, which is made of a 10cm tube of a glass composite, which is very stable to temperature fluctuations. Normal diode-type lasers hold it in place, cooling it to near-absolute zero and cause it to emit photons at an extraordinarily steady rate.

Helen Margolis from NPL says her team's Strontium version of an optical clock has the advantage over other ions like Mercury and Aluminium that the lasers it requires are common commercial types already cheaply produced.

Strontium clocks have now reached the point where their only point of reference for accuracy, the old-style Caesium clocks, can't compete. Margolis says the next step will be to have several Strontium clocks to compare against each other.

As well as having practical applications in navigation and telecoms, how well we can pin down the length of a second is a fundamental issue in physics. Indeed, basic units of length are defined by how far light travels in various time periods. ®

New hybrid storage solutions

More from The Register

next story
PORTAL TO ELSEWHERE scried in small galaxy far, far away
Supermassive black hole dominates titchy star formation
Bacon-related medical breakthrough wins Ig Nobel prize
Is there ANYTHING cured pork can't do?
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.