Feeds

Time up for atomic clocks

Every second counts

Security for virtualized datacentres

Scientists are plotting a new era of hyper-exact timekeeping, spelling the end of the atomic clock in its current form. Very accurate clocks are vital in telecommunications, GPS, and other modern technological applications.

Traditional Caesium-based atomic clocks have been around since the mid-50s. They work by detecting microwave emissions from the Caesium atom, which occur at a very steady rate. Since 1967 that rate has been the fundamental frequency on which the international definition of a second is based. Prior to that, seconds had been defined in terms of the Earth's rotation, which is relatively variable.

The new clocks will work using optical rather than microwave frequencies, and ions rather than atoms. In timekeeping, the higher the frequency, the more stable the time signal. A team at the National Physics Laboratory (NPL) is using a light emitting Strontium ion trapped and cooled by lasers to push the accuracy of clocks.

The positively-charged ion sits in a spinning "saddle" of positive charge either side of it in the device, which is made of a 10cm tube of a glass composite, which is very stable to temperature fluctuations. Normal diode-type lasers hold it in place, cooling it to near-absolute zero and cause it to emit photons at an extraordinarily steady rate.

Helen Margolis from NPL says her team's Strontium version of an optical clock has the advantage over other ions like Mercury and Aluminium that the lasers it requires are common commercial types already cheaply produced.

Strontium clocks have now reached the point where their only point of reference for accuracy, the old-style Caesium clocks, can't compete. Margolis says the next step will be to have several Strontium clocks to compare against each other.

As well as having practical applications in navigation and telecoms, how well we can pin down the length of a second is a fundamental issue in physics. Indeed, basic units of length are defined by how far light travels in various time periods. ®

Security for virtualized datacentres

More from The Register

next story
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Thought that last dinosaur was BIG? This one's bloody ENORMOUS
Weighed several adult elephants, contend boffins
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
'Duck face' selfie in SPAAAACE: Rosetta's snap with bird comet
Probe prepares to make first landing on fast-moving rock
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
Saudi Petroleum chooses Tegile storage solution
A storage solution that addresses company growth and performance for business-critical applications of caseware archive and search along with other key operational systems.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.