Feeds

Quantum computer solves problem without running

Paradox

Beginner's guide to SSL certificates

A quantum computer at a US University has solved a computational problem without running a program. Scientists at the University of Illinois at Urbana-Champaign gleaned the answer to an algorithm by combining quantum computation and quantum interrogation (a technique that makes use of wave-particle duality to search a region of space without actually entering that region) in an optical-based quantum computer through a process called "counterfactual computation".

"It seems absolutely bizarre that counterfactual computation – using information that is counter to what must have actually happened – could find an answer without running the entire quantum computer," said Paul Kwiat, a John Bardeen Professor of Electrical and Computer Engineering and Physics at Illinois. "But the nature of quantum interrogation makes this amazing feat possible."

The scientists explain this paradoxical result in the February 23 issue of Nature. The set-up for the experiment is explained in the University's press release (those unfamiliar with exotic nature of quantum physics - as exemplified by the Schrodinger's Cat thought experiment - should look away now) thus:

Utilising two coupled optical interferometers, nested within a third, Kwiat's team succeeded in counterfactually searching a four-element database using Grover's quantum search algorithm. "By placing our photon in a quantum superposition of running and not running the search algorithm, we obtained information about the answer even when the photon did not run the search algorithm," said graduate student Onur Hosten, lead author of the Nature paper. "We also showed theoretically how to obtain the answer without ever running the algorithm, by using a 'chained Zeno' effect."

Through clever use of beam splitters and both constructive and destructive interference, the researchers can put each photon in a superposition of taking two paths. Although a photon can occupy multiple places simultaneously, it can only make an actual appearance at one location. Its presence defines its path, and that can, in a very strange way, negate the need for the search algorithm to run.

"In a sense, it is the possibility that the algorithm could run which prevents the algorithm from running," Kwiat said. "That is at the heart of quantum interrogation schemes, and to my mind, quantum mechanics doesn't get any more mysterious than this."

Obscure at this may sound, quantum computers have the potential to outstrip the capabilities of even the most modern of today's supercomputers. Although the University of Illinois' quantum computer cannot be scaled up, using these kinds of interrogation techniques the researchers are pioneering might make it possible to reduce errors in larger systems. ®

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
The next big thing in medical science: POO TRANSPLANTS
Your brother's gonna die, kid, unless we can give him your, well ...
NASA launches new climate model at SC14
75 days of supercomputing later ...
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
The total economic impact of Druva inSync
Examining the ROI enterprises may realize by implementing inSync, as they look to improve backup and recovery of endpoint data in a cost-effective manner.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.