Quantum computer solves problem without running


The smart choice: opportunity from uncertainty

A quantum computer at a US University has solved a computational problem without running a program. Scientists at the University of Illinois at Urbana-Champaign gleaned the answer to an algorithm by combining quantum computation and quantum interrogation (a technique that makes use of wave-particle duality to search a region of space without actually entering that region) in an optical-based quantum computer through a process called "counterfactual computation".

"It seems absolutely bizarre that counterfactual computation – using information that is counter to what must have actually happened – could find an answer without running the entire quantum computer," said Paul Kwiat, a John Bardeen Professor of Electrical and Computer Engineering and Physics at Illinois. "But the nature of quantum interrogation makes this amazing feat possible."

The scientists explain this paradoxical result in the February 23 issue of Nature. The set-up for the experiment is explained in the University's press release (those unfamiliar with exotic nature of quantum physics - as exemplified by the Schrodinger's Cat thought experiment - should look away now) thus:

Utilising two coupled optical interferometers, nested within a third, Kwiat's team succeeded in counterfactually searching a four-element database using Grover's quantum search algorithm. "By placing our photon in a quantum superposition of running and not running the search algorithm, we obtained information about the answer even when the photon did not run the search algorithm," said graduate student Onur Hosten, lead author of the Nature paper. "We also showed theoretically how to obtain the answer without ever running the algorithm, by using a 'chained Zeno' effect."

Through clever use of beam splitters and both constructive and destructive interference, the researchers can put each photon in a superposition of taking two paths. Although a photon can occupy multiple places simultaneously, it can only make an actual appearance at one location. Its presence defines its path, and that can, in a very strange way, negate the need for the search algorithm to run.

"In a sense, it is the possibility that the algorithm could run which prevents the algorithm from running," Kwiat said. "That is at the heart of quantum interrogation schemes, and to my mind, quantum mechanics doesn't get any more mysterious than this."

Obscure at this may sound, quantum computers have the potential to outstrip the capabilities of even the most modern of today's supercomputers. Although the University of Illinois' quantum computer cannot be scaled up, using these kinds of interrogation techniques the researchers are pioneering might make it possible to reduce errors in larger systems. ®

Eight steps to building an HP BladeSystem

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
MARS NEEDS OCEANS to support life - and so do exoplanets
Just being in the Goldilocks zone doesn't mean there'll be anyone to eat the porridge
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
prev story


Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.