Feeds

MIT boffins make hot superfluid

For a specified value of 'hot'

  • alert
  • submit to reddit

The smart choice: opportunity from uncertainty

Scientists at MIT have created a new kind of matter: a gas of atoms that exhibits superfluidity at high temperatures. Or at least, what passes for high temperatures among researchers at the MIT Harvard Center for Ultracold atoms.

A superfluid gas flows without resistance, and has some very odd properties. One of these is that it will only rotate when it is punctuated by vortices, similar to miniature tornados, making it easy to distinguish from a normal gas.

The research team spent a year trying to cajole their gas sample into rotating. First, they had to cool their sample to close to absolute zero. This is done by laser and evapourative cooling, which we are willing to bet is easier to type than to do. Next, they had to trap the gas in the focus of an infrared laser beam. The electric and magnetic fields of the beam are what hold the atoms in place.

The last step is to get the gas to rotate by spinning a green laser beam around it, a process graduate student Martin Zwierlein described as being "like sanding the bumps off of a wheel to make it perfectly round".

The team finally spotted the vortices when the gas was cooled to 50 billionths of a degree Kelvin.

Hold on, we hear you ask, didn't they say high temperature superfluidity? Well, yes they did, and we agree that 50 billionths of a degree Kelvin sounds pretty chilly to us.

Fortunately, a Nobel laureate was able to clarify the situation: "It may sound strange to call superfluidity at 50 nanokelvin high-temperature superfluidity, but what matters is the temperature normalized by the density of the particles," said Wolfgang Ketterle, head of the MIT research Group.

Using this rather dodgy sounding logic,( but hey, if you can't trust a Nobel laureate, who can you trust?), it seems the team is allowed to scale their results up from the very high densities of fermionic atoms to the more spaced-out nature of mere solids. Once they do this, the numbers show that the superfluidity happened a really quite high temperatures after all. Higher, even, than room temperature.

Dan Kleppner, director of the MIT-Harvard Center for Ultracold Atoms, said, "This is not a smoking gun for superfluidity. This is a cannon."

The team's work is published in today's (23 June) issue of Nature. ®

Related stories

Scientists spot signal from solar-sail craft
Doctor Who better than Star Trek - official
Swiss neurologists to model the brain

The Power of One Infographic

More from The Register

next story
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
Jurassic squawk: Dinos were Earth's early FEATHERED friends
Boffins research: Ancient dinos may all have had 'potential' fluff
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.