Feeds

MIT boffins make hot superfluid

For a specified value of 'hot'

  • alert
  • submit to reddit

Protecting against web application threats using SSL

Scientists at MIT have created a new kind of matter: a gas of atoms that exhibits superfluidity at high temperatures. Or at least, what passes for high temperatures among researchers at the MIT Harvard Center for Ultracold atoms.

A superfluid gas flows without resistance, and has some very odd properties. One of these is that it will only rotate when it is punctuated by vortices, similar to miniature tornados, making it easy to distinguish from a normal gas.

The research team spent a year trying to cajole their gas sample into rotating. First, they had to cool their sample to close to absolute zero. This is done by laser and evapourative cooling, which we are willing to bet is easier to type than to do. Next, they had to trap the gas in the focus of an infrared laser beam. The electric and magnetic fields of the beam are what hold the atoms in place.

The last step is to get the gas to rotate by spinning a green laser beam around it, a process graduate student Martin Zwierlein described as being "like sanding the bumps off of a wheel to make it perfectly round".

The team finally spotted the vortices when the gas was cooled to 50 billionths of a degree Kelvin.

Hold on, we hear you ask, didn't they say high temperature superfluidity? Well, yes they did, and we agree that 50 billionths of a degree Kelvin sounds pretty chilly to us.

Fortunately, a Nobel laureate was able to clarify the situation: "It may sound strange to call superfluidity at 50 nanokelvin high-temperature superfluidity, but what matters is the temperature normalized by the density of the particles," said Wolfgang Ketterle, head of the MIT research Group.

Using this rather dodgy sounding logic,( but hey, if you can't trust a Nobel laureate, who can you trust?), it seems the team is allowed to scale their results up from the very high densities of fermionic atoms to the more spaced-out nature of mere solids. Once they do this, the numbers show that the superfluidity happened a really quite high temperatures after all. Higher, even, than room temperature.

Dan Kleppner, director of the MIT-Harvard Center for Ultracold Atoms, said, "This is not a smoking gun for superfluidity. This is a cannon."

The team's work is published in today's (23 June) issue of Nature. ®

Related stories

Scientists spot signal from solar-sail craft
Doctor Who better than Star Trek - official
Swiss neurologists to model the brain

Reducing the cost and complexity of web vulnerability management

More from The Register

next story
PORTAL TO ELSEWHERE scried in small galaxy far, far away
Supermassive black hole dominates titchy star formation
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.