Feeds

MIT boffins make hot superfluid

For a specified value of 'hot'

  • alert
  • submit to reddit

Beginner's guide to SSL certificates

Scientists at MIT have created a new kind of matter: a gas of atoms that exhibits superfluidity at high temperatures. Or at least, what passes for high temperatures among researchers at the MIT Harvard Center for Ultracold atoms.

A superfluid gas flows without resistance, and has some very odd properties. One of these is that it will only rotate when it is punctuated by vortices, similar to miniature tornados, making it easy to distinguish from a normal gas.

The research team spent a year trying to cajole their gas sample into rotating. First, they had to cool their sample to close to absolute zero. This is done by laser and evapourative cooling, which we are willing to bet is easier to type than to do. Next, they had to trap the gas in the focus of an infrared laser beam. The electric and magnetic fields of the beam are what hold the atoms in place.

The last step is to get the gas to rotate by spinning a green laser beam around it, a process graduate student Martin Zwierlein described as being "like sanding the bumps off of a wheel to make it perfectly round".

The team finally spotted the vortices when the gas was cooled to 50 billionths of a degree Kelvin.

Hold on, we hear you ask, didn't they say high temperature superfluidity? Well, yes they did, and we agree that 50 billionths of a degree Kelvin sounds pretty chilly to us.

Fortunately, a Nobel laureate was able to clarify the situation: "It may sound strange to call superfluidity at 50 nanokelvin high-temperature superfluidity, but what matters is the temperature normalized by the density of the particles," said Wolfgang Ketterle, head of the MIT research Group.

Using this rather dodgy sounding logic,( but hey, if you can't trust a Nobel laureate, who can you trust?), it seems the team is allowed to scale their results up from the very high densities of fermionic atoms to the more spaced-out nature of mere solids. Once they do this, the numbers show that the superfluidity happened a really quite high temperatures after all. Higher, even, than room temperature.

Dan Kleppner, director of the MIT-Harvard Center for Ultracold Atoms, said, "This is not a smoking gun for superfluidity. This is a cannon."

The team's work is published in today's (23 June) issue of Nature. ®

Related stories

Scientists spot signal from solar-sail craft
Doctor Who better than Star Trek - official
Swiss neurologists to model the brain

Internet Security Threat Report 2014

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
Relive the death of Earth over and over again in Extinction Game
Apocalypse now, and tomorrow, and the next day, and the day after that ...
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.