Feeds

NEC touts quantum crypto advances

I can see the light

  • alert
  • submit to reddit

Next gen security for virtualised datacentres

Japanese boffins have succeeded in achieving what's touted as the World's fastest continuous quantum cryptography key generation. Researchers from NEC, the National Institute of Information and Communications Technology and the Japan Science and Technology Agency achieved a fortnight-long, continuous quantum cryptography final-key generation1 at an average rate of 13kbps over a 16-km-long commercial optical network.

Developments in producing a low-noise photon receiver and an alternative-shift phase modulation method permitted the advance. An average quantum error rate is 7.5 per cent and the average final-key generation rate is 13.0 kbps was achieved during the experiment.

Quantum cryptography allows two users on an optical fibre network to exchange secret keys. It takes advantage of the particle-like nature of light. In quantum cryptography, each bit of the key is encoded upon a single light particle (or ‘photon’). Intercepting this data randomly changes the polarisation of the light, irreversibly altering the data. Because of this quantum mechanics affect any attempt by an eavesdropper to determine a key corrupts the same key. Quantum cryptography systems discard these corrupt keys and only use codes that are known to be secure. These quantum keys, once exchanged, can be used in a one-time pad.

Swiss firm ID Quantique, along with US start-up MagiQ, are the only companies selling quantum key distribution systems commercially though QinetiQ and Toshiba Cambridge are also heavily involved in research into "unbreakable" cryptography. NEC said that previous quantum cryptography systems have not been able to achieve long-time continuous key generation due to fibre delay variations, reflection and scattering in fibre.

NEC has developed Wavelength division multiplexing technologies to enable transmission of synchronizing signals and quantum signals in the same optical fibre, a feature touted as an advance of existing commercial systems. However the availability of commercial systems from NEC may be up to three years away, IDG reports. ®

1 The final-key is generated from the raw-key by eliminating bits that have possibilities of errors and eavesdropping. The raw-key is a set of random bits generated by single-photon transmission and detection.

Related stories

Aussie boffins patent single-photon generator
Quantum crypto moves out of the lab
Quantum crypto comes to Blighty

The essential guide to IT transformation

More from The Register

next story
Goog says patch⁵⁰ your Chrome
64-bit browser loads cat vids FIFTEEN PERCENT faster!
Chinese hackers spied on investigators of Flight MH370 - report
Classified data on flight's disappearance pinched
KER-CHING! CryptoWall ransomware scam rakes in $1 MEEELLION
Anatomy of the net's most destructive ransomware threat
NIST to sysadmins: clean up your SSH mess
Too many keys, too badly managed
Scratched PC-dispatch patch patched, hatched in batch rematch
Windows security update fixed after triggering blue screens (and screams) of death
Researchers camouflage haxxor traps with fake application traffic
Honeypots sweetened to resemble actual workloads, complete with 'secure' logins
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.