Feeds

Coming soon: the 10-year nuclear battery

Betavoltaics a-go-go

  • alert
  • submit to reddit

The smart choice: opportunity from uncertainty

Scientists in the US have developed a new fabrication technique that will lead to nuclear batteries that could last for decades. The researchers, based at the University of Rochester, claim that the technique is already ten times more efficient than current nuclear batteries, and has the potential to outstrip them nearly 200 times.

This breakthrough is unlikely to have an impact on your mobile phone or notebook battery life, however. The technology is designed for inaccessible places or under extreme conditions, and is more likely to find its way into pacemakers, implanted defibrillators, deep-space probes or deep-sea sensors, the researchers say.

Although the basic technology - betavoltaics - has been known for around 50 years, low energy yields meant that its usefulness has been limited. Betavoltaics uses silicon to capture electrons emitted from a radioactive gas, such as tritium, to form a current. But this current is less than is generated by a typical solar cell. Part of the problem is that as the radioactive substance decays, most of the electrons miss the silicon surface.

Philippe Fauchet, professor of electrical and computer engineering at the University of Rochester, and co-author of the research commented: "For 50 years, people have been investigating converting simple nuclear decay into usable energy, but the yields were always too low. We've found a way to make the interaction much more efficient, and we hope these findings will lead to a new kind of battery that can pump out energy for years."

What Fauchet and his team have done is to massively increase the surface area where the current is produced. Rather than use a flat collecting surface, he and his team have riddled the silicon with micron-wide pits, using standard semiconductor fabrication technology. Each of the pits will fill with the tritium gas, and as the gas decays, far more of the resulting electrons collide with the silicon surface.

"Our ultimate design has roughly 160 times the surface area of the conventional, flat design," Fauchet concludes.

The research was published in the current issue of Advanced Materials. Read more in the release from Rochester University here. ®

Related stories

Biofuels key to UK farming future
Six more months for Mars rovers
Scientists suck hydrogen from sunflower oil

Eight steps to building an HP BladeSystem

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
All those new '5G standards'? Here's the science they rely on
Radio professor tells us how wireless will get faster in the real world
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
prev story

Whitepapers

Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.