Feeds

Scientists push bacteria to quadruple hydrogen production

Amazing what a zap of electricty will do

  • alert
  • submit to reddit

New hybrid storage solutions

Researchers at Penn State university have discovered a new way of stimulating bacteria to extract hydrogen from bio-matter. The technique can yield four times as much hydrogen as fermentation alone, and unlike traditional fermentation, is not limited to carbohydrate based biomass.

Dr. Bruce Logan, professor of environmental engineering at Penn State, said that the The microbial fuel cell (MFC) can theoretically be used to get high yields of hydrogen from any biodegradable, dissolved, organic matter - human, agricultural or industrial wastewater. At the same time, the process would clean the waste water.

Many researchers are working on new ways of generating hydrogen, in anticipation of it becoming a much more important fuel source in the future.

Logan commented: "While there is likely insufficient waste biomass to sustain a global hydrogen economy, this form of renewable energy production may help offset the substantial costs of wastewater treatment as well as provide a contribution to nations able to harness hydrogen as an energy source."

In a paper entitled Electrochemically Assisted Microbial Production of Hydrogen from Acetate, the researchers explain that the amount of hydrogen produced by bacteria is limited by the so-called fermentation barrier. Without extra power, bacteria will produce hydrogen and other dead-end products such as acetic and butyric acids.

With a small power injection, around 0.25 volts or about one tenth of that required for electrolysis, the bacteria will break acetic acid down further, releasing more hydrogen and some carbon dioxide.

Logan explains that the research team has used a microbial fuel cell that was developed to clean waste water, and produce electricity. By preventing oxygen from getting in, and adding a small amount of electricity, they found it would generate hydrogen instead.

When the bacteria eat biomass, they transfer electrons to the anode. The bacteria also release protons or hydrogen ions, which go into solution. The electrons on the anode migrate via a wire to the cathode, where they are electrochemically assisted to combine with the protons and produce hydrogen gas.

The research is published online now, and is scheduled for publication in a future issue of Environmental Science and Technology. ®

Related stories

Nanotech's grand challenge is sustainable development
Hydrogen cars by 2012 says DaimlerChrysler
UK failing CO2 targets

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Thought that last dinosaur was BIG? This one's bloody ENORMOUS
Weighed several adult elephants, contend boffins
Chelyabinsk-sized SURPRISE asteroid to skim Earth, satnav birds
Space rock appears out of nowhere, buzzes planet on Sunday
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
'Duck face' selfie in SPAAAACE: Rosetta's snap with bird comet
Probe prepares to make first landing on fast-moving rock
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.