Feeds

Scientists push bacteria to quadruple hydrogen production

Amazing what a zap of electricty will do

  • alert
  • submit to reddit

Next gen security for virtualised datacentres

Researchers at Penn State university have discovered a new way of stimulating bacteria to extract hydrogen from bio-matter. The technique can yield four times as much hydrogen as fermentation alone, and unlike traditional fermentation, is not limited to carbohydrate based biomass.

Dr. Bruce Logan, professor of environmental engineering at Penn State, said that the The microbial fuel cell (MFC) can theoretically be used to get high yields of hydrogen from any biodegradable, dissolved, organic matter - human, agricultural or industrial wastewater. At the same time, the process would clean the waste water.

Many researchers are working on new ways of generating hydrogen, in anticipation of it becoming a much more important fuel source in the future.

Logan commented: "While there is likely insufficient waste biomass to sustain a global hydrogen economy, this form of renewable energy production may help offset the substantial costs of wastewater treatment as well as provide a contribution to nations able to harness hydrogen as an energy source."

In a paper entitled Electrochemically Assisted Microbial Production of Hydrogen from Acetate, the researchers explain that the amount of hydrogen produced by bacteria is limited by the so-called fermentation barrier. Without extra power, bacteria will produce hydrogen and other dead-end products such as acetic and butyric acids.

With a small power injection, around 0.25 volts or about one tenth of that required for electrolysis, the bacteria will break acetic acid down further, releasing more hydrogen and some carbon dioxide.

Logan explains that the research team has used a microbial fuel cell that was developed to clean waste water, and produce electricity. By preventing oxygen from getting in, and adding a small amount of electricity, they found it would generate hydrogen instead.

When the bacteria eat biomass, they transfer electrons to the anode. The bacteria also release protons or hydrogen ions, which go into solution. The electrons on the anode migrate via a wire to the cathode, where they are electrochemically assisted to combine with the protons and produce hydrogen gas.

The research is published online now, and is scheduled for publication in a future issue of Environmental Science and Technology. ®

Related stories

Nanotech's grand challenge is sustainable development
Hydrogen cars by 2012 says DaimlerChrysler
UK failing CO2 targets

Secure remote control for conventional and virtual desktops

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
Volcanic eruption in Iceland triggers CODE RED aviation warning
Lava-spitting Bárðarbunga prompts action from Met Office
LOHAN Kickstarter breaks NINETEEN THOUSAND of your EARTH POUNDS
That's right, OVER 9,000 beer tokens - and counting
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.