Feeds

Intel boffins build first continuous beam silicon laser

Two-photon absorption problem solved

  • alert
  • submit to reddit

Security for virtualized datacentres

Intel scientists have developed what they claim is the world's first continuous-wave laser constructed from silicon in a single chip.

To date, a number of silicon-based lasers have been developed but they have all been capable only of emitting pulses of optical energy. Getting a silicon laser to operate continuously is a key step in the development of optical interconnects between microprocessors and, ultimately, chips that operate using optical rather than electronic switches.

Intel's chip uses the Raman Effect, a process whereby one laser beam - called the 'pump' - is used to amplify a second, low-power, data-carrying beam of a different wavelength. The Raman Effect has predominantly been used to transmit data across very long, multi-kilometre glass fibre optical links, but Intel's goal is to utilise the technique in silicon.

Intel's chip laser consists of a silicon waveguide sandwiched between two semi-transparent mirrors, with the pump laser input at one end and the signal output at the other. Building a waveguide in silicon to channel the beams is relatively easy, because silicon is transparent to infra-red light. It's desirable because silicon chip fabrication is cheap and a relatively straightforward process to apply. But the trick has been getting the pump strength up to a point where the energy of the amplified data beam is greater than the energy lost as imperfections in the waveguide impede the beam.

Then there's the so-called two-photon absorption problem, which limits how far you can turn up the pump strength. Beyond a certain point, pairs of photons - particles of light - collide simultaneously with an atom of silicon providing sufficient energy to create a free electron in the waveguide. These electrons, in turn, absorb energy from the pump and amplified data beams, reducing the strength of the output signal, potentially far enough to counteract the Raman Effect. It's this two-photon absorption problem that has so far limited silicon lasers to pulse-only operation.

Intel's breakthrough is to use a transistor structure to surround the waveguide and pull the free electrons away from the beam, allowing the pump strength to rise to a point where a good, continuous output beam is generated.

"We have demonstrated stable single mode laser output with side-mode suppression of over 55dB and line width of less than 80MHz," the company said in an article published today in the science journal Nature.

The technique is simply an R&D project today, but Intel said it reckons the process could be commercialised by the end of the decade. ®

Related stories

Alliance touts holographic disc 'revolution'
Elpida licenses 'DVD on a chip' memory tech
Germans demo working quantum register
Light dawns at Intel
IBM builds world's smallest torch
Optical computing ushers in 10GHz chips

Security for virtualized datacentres

More from The Register

next story
Boffins who stare at goats: I do believe they’re SHRINKING
Alpine chamois being squashed by global warming
What's that STINK? Rosetta probe shoves nose under comet's tail
Rotten eggs, horse dung and almonds – yuck
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
Kip Thorne explains how he created the black hole for Interstellar
Movie special effects project spawns academic papers on gravitational lensing
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
Moment of truth for LOHAN's servos: Our US allies are poised for final test flight
Will Vulture 2 freeze at altitude? Edge Research Lab to find out
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.