Feeds

NASA re-schedules Swift launch

Probing the secrets of Gamma Ray Bursters

  • alert
  • submit to reddit

Top three mobile application threats

The launch date for NASA's Swift satellite - designed to detect and analyse gamma ray bursters - has been delayed thanks to a faulty third stage rocket on an unrelated launch. The mission has been given a new provisional launch date of 11 November. Scientists involved in the project expect this to be confirmed within days.

Swift has been designed to detect and locate gamma ray bursts (GRB) more quickly and with greater accuracy than ever before. At the moment, astronomers detect between one and two GRB's every month, but when Swift is fully operational, this number will rise to around two per week.

The researchers will investigate four main questions: how is a GRB formed; what is the basic physics involved; is there just one kind, or many sub-classes; and what can they tell us about the early universe? Currently, astronomers believe GRBs are formed in one of two ways: from a super-giant star collapsing in on itself to form a black hole, or from the collision of two neutron stars in a decaying binary orbit, again, forming a black hole.

Whatever the precise mechanism, the result is a two jets of material expelled along the spin axis of the new body at a significant fraction of the speed of light. They are also extremely short lived, lasting anything from less than a second to a few minutes. Once it detects a burst, Swift will turn its telescopes towards the explosion within 20-70 seconds - much faster than current response times of hours, or even days.

Professor Keith Mason at University College, London's (UCL) Mullard laboratory, describes the bursts as being designed for superlatives as they are the largest explosions we have detected in the universe, ever. To get anything bigger, you need to invoke the big bang.

The jets are incredibly energetic and extremely bright, and involve a lot of gamma radiation. If one was to form at the centre of our galaxy, it would appear to us to be as bright as the sun. He explains that if one were to form that close it might also boil off the atmosphere, so its probably best not to dwell on that idea for too long.

In fact GRBs are so bright, that they could be detected as far back as the earliest five percent of the universe's life time. Since making a GRB needs a star to collapse, their presence is conclusive proof of star formation. The further back we find them, the more we learn about the early universe.

The satellite has three main instruments on board to try to answer the questions: the Burst Alert Telescope (BAT), the X-Ray telescope, and the Optical and UV telescope. The UK has taken a lead role in building the latter two. Once the BAT spots the burst it can determine its position to within four arcminutes, and sends this information to observers on the ground.

The satellite's automated response system will then kick in and swivel the craft round so that its other instruments are trained on that spot of sky. The X-Ray telescope can narrow the field still further to around 5 arcseconds, and the optical instrument to sub-arcsecond accuracy. All this will happen within 300 seconds.

Back on the ground, a network of robotic telescopes will swing into action, and researchers will also be able to call on some of the largest optical and radio telescopes to make further observations. Hubble and other orbital observatories may join in too.

Once the satellite is in orbit, it will begin a month-long period of testing and calibration. The instruments will be partially switched on during this phase, while the team confirms that the satellite can track areas of the sky without pointing at the sun, the moon or the earth, any of which would fry its delicate instruments.

All being well, Swift should be fully operational from the end of March 2005. ®

Related stories

X-ray fireworks could signal supernovae
Smart telescopes probe galactic mysteries

3 Big data security analytics techniques

More from The Register

next story
Red-faced LOHAN team 'fesses up in blown SPEARS fuse fiasco
Standing in the corner, big pointy 'D' hats
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
Opportunity selfie: Martian winds have given the spunky ol' rover a spring cleaning
Power levels up 70 per cent as the rover keeps on truckin'
KILLER ROBOTS, DNA TAMPERING and PEEPING CYBORGS: the future looks bright!
Americans optimistic about technology despite being afraid of EVERYTHING
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
Fancy joining Reg hack on quid-a-day challenge?
Recruiting now for charity starvation diet
prev story

Whitepapers

Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Top three mobile application threats
Learn about three of the top mobile application security threats facing businesses today and recommendations on how to mitigate the risk.
Combat fraud and increase customer satisfaction
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.